首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The tropical lianaAncistrocladus heyneanus, which is known for its biologically active naphthylisoquinoline alkaloids, has been studied by nuclear magnetic resonance (NMR) microscopy for the first time. The spatial resolution of the cross-sectional NMR images was of the order of 20 m. Quantitative NMR relaxation time images of the root and the shoot show great contrast between different tissue regions. In addition, we observed the regional distribution of chemical compounds inAncistrocladus heyneanus by chemical-shift NMR microscopy. The NMR imaging results were compared with light and fluorescence microscopic images and reveal the excellent tissue characterization using NMR technology.Abbreviations NMR nuclear magnetic resonance - CSI chemical-shift magnetic resonance imaging - FOV field of view - TE echo time - TR repetition time  相似文献   

2.
Inflated lungs are characterized by a short nuclear magnetic resonance (NMR) free induction decay (rapid disappearance of NMR signal), likely due to internal (tissue-induced) magnetic field inhomogeneity produced by the alveolar air-tissue interface. This phenomenon can also be detected using temporally symmetric and asymmetric NMR spin-echo sequences; these sequences generate a pair of NMR images from which a difference signal (delta) is obtained (reflecting the signal from lung water experiencing the air-tissue interface effect). We measured delta in normal excised rat lungs at inflation pressures of 0-30 cmH2O for asymmetry times (a) of 1-6 ms. Delta was low in degassed lungs and increased markedly with alveolar opening when measured at a = 6 ms (delta 6 ms); delta 6 ms varied little during the rest of the inflation-deflation cycle. Delta 1 ms (a = 1 ms) did not vary significantly on inflation and deflation. Measurements of delta at a = 3 and 5 ms generally lay between those of delta 1 ms and delta 6 ms. These findings, which are consistent with theoretical predictions, suggest that measurements of delta at appropriate asymmetry times are particularly sensitive to alveolar opening and may provide a means of distinguishing alveolar recruitment from alveolar distension in the pressure-volume behavior of the lung.  相似文献   

3.
The present article reviews the basic principles of a new approach to the characterization of pulmonary disease. This approach is based on the unique nuclear magnetic resonance (NMR) properties of the lung and combines experimental measurements (using specially developed NMR techniques) with theoretical simulations. The NMR signal from inflated lungs decays very rapidly compared with the signal from completely collapsed (airless) lungs. This phenomenon is due to the presence of internal magnetic field inhomogeneity produced by the alveolar air–tissue interface (because air and water have different magnetic susceptibilities). The air–tissue interface effects can be detected and quantified by magnetic resonance imaging (MRI) techniques using temporally symmetric and asymmetric spin‐echo sequences. Theoretical models developed to explain the internal (tissue‐induced) magnetic field inhomogeneity in aerated lungs predict the NMR lung behavior as a function of various technical and physiological factors (e.g., the level of lung inflation) and simulate the effects of various lung disorders (in particular, pulmonary edema) on this behavior. Good agreement has been observed between the predictions obtained from the mathematical models and the results of experimental NMR measurements in normal and diseased lungs. Our theoretical and experimental data have important pathophysiological and clinical implications, especially with respect to the characterization of acute lung disease (e.g., pulmonary edema) and the management of critically ill patients. Bioelectromagnetics 20:110–119, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The extent that various concentrations of the paramagnetic metal ion manganese [Mn(II)] affect nuclear magnetic resonance (NMR) relaxation times was studied in vitro. Serial dilutions of Mn(II) were prepared in distilled water, 4% human serum albumin, dog plasma, dog gallbladder bile, and dog hepatic bile. T1 and T2 of each were measured at 10.7 M Hz using magnetization recovery and spin-echo radiofrequency sequences, respectively. The results show that relaxation rates (1/T1 and 1/T2) increase in a linear manner with increasing concentration of Mn(II) in all of the solutions tested. Mn(II) dissolved in dog gallbladder and hepatic bile, dog plasma, and 4% human serum albumin reduced relaxation times to a greater extent than Mn(II) in water. T1 times were reduced to a greater extent than T2 values. Thus, in T1 weighted magnetic resonance images, the NMR signal used to produce images would be more sensitive to the presence of Mn(II) in these biological fluids than in water. Furthermore, the magnitude of this in vivo effect of Mn(II) on NMR relaxation parameters depends not only on the concentration of this paramagnetic ion, but also on the constituents comprising the biological fluids (intra- and extracellular water, bile, plasma) and the nature of the chemical molecular interactions between these constituents and Mn(II).  相似文献   

5.
Nuclear magnetic resonance (NMR) imaging is an established diagnostic medium to diagnose multiple sclerosis (MS). In clinically stable MS patients, NMR detects silent disease activity, which is the reason why it is being used to monitor treatment trials, in which it serves as a secondary outcome parameter. The absence of a clear correlation with clinical disability, the so-called 'clinico-radiological' paradox, and the poor predictive value of NMR prohibit the use of NMR as a primary outcome parameter in clinical trials. This is--among others--a result of the limited histopathological specificity of conventional, or 'T2-weighted' imaging, the most commonly used NMR technique. In this paper we review additional NMR techniques with higher tissue specificity, most of which show marked heterogeneity within NMR-visible lesions, reflecting histopathological heterogeneity. Gadolinium enhancement identifies the early inflammatory phase of lesion development, with active phagocytosis by macrophages. Persistently hypointense lesions on T1-weighted images ('black holes') relate to axonal loss and matrix destruction, and show a better correlation with clinical disability. Marked prolongation of T1 relaxation time correlates with enlargement of the extracellular space, which occurs as a result of axonal loss or oedema. Axonal viability can also be measured using the concentration of N-acetyl aspartate (NAA) using NMR spectroscopy; this technique is also capable of showing lactate and mobile lipids in lesions with active macrophages. The multi-exponential behaviour of T2 relaxation time in brain white matter provides a tool to monitor the myelin water component in MS lesions (short T2 component) as well as the expansion of the extracellular space (long T2 component). Chemical exchange with macromolecules (e.g. myelin) can be measured using magnetization transfer imaging, and correlates with demyelination, axonal loss and matrix destruction. Increased water diffusion has been found in MS lesions (relating to oedema and an expanded extracellular space) and a loss of anisotropy may indicate a loss of fibre orientation (compatible with demyelination). Apart from the histopathological heterogeneity within focal MS lesions, the normal-appearing white matter shows definite abnormalities with all quantifiable NMR techniques. A decrease in the concentration of NAA, decreased magnetization transfer values and prolonged T1 relaxation time values are probably all related to microscopic abnormalities, including axonal damage. This 'invisible' lesion load may constitute a significant proportion of the total lesion load but is not visible on conventional NMR. Similarly, mechanisms for clinical recovery exist, which are not distinguished using MR imaging. Therefore, it is highly unlikely that the clinico-radiological paradox will ever be solved completely. However, NMR provides an opportunity to sequentially measure tissue changes in vivo. Using MR parameters with (presumed) histopathological specificity, the development of (irreversible) tissue damage can be monitored, which perhaps allows the identification of factors that determine lesional outcome in MS. Since the absence of severe tissue destruction is prognostically favourable, NMR monitoring of the extent to which such changes can be prevented by treatment will ultimately benefit the selection of future treatment strategies.  相似文献   

6.
The observation of the spin-echo decay in a long time domain has revealed that there exist at least three different fractions of non- (or slowly) exchanging water in the rat gastrocnemius muscle. These fractions of water are characterized with different nuclear magnetic resonance (NMR) relaxation times and are identified with the different parts of tissue water. The water associated with the macromolecules was found to be approximately 8% of the total tissue water and not to exchange rapidly with the rest of the intracellular water. The transverse relaxation time (T2) of the myoplasm is 45 ms which is roughly a 40-fold reduction from that of a dilute electrolyte solution. This fraction of water accounts for 82% of the tissue water. The reduced relaxation time is shown neither to be caused by fast exchange between the hydration and myoplasmic water nor by the diffusion of water across the local magnetic field gradients which arise from the heterogeneity in the sample. About 10% of the tissue water was resolved to be associated with the extracellular space, the relaxation time of which is approximately four times that of the myoplasm. Mathematical treatments of the proposed mechanisms which may be responsible for the reduction of tissue water relaxation times are given in this paper. The results of our study are consistent with the notion that the structure and/or motions of all or part of the cellular water are affected by the macromolecular interface and this causes a change in the NMR relaxation rates.  相似文献   

7.
Two techniques of nuclear magnetic resonance (NMR) have been used for the study of water and lipids reserves in seeds. The temperature dependence of T1 relaxation time helps to identify differences in the thermodynamic properties of water between dry seeds and during germination. Among the species studied, T2 measurements distinguish two categories of seeds: pea, maize and wheat for which two components of T2 are observed, and lettuce, tomato and radish which present one single component. The main short component is attributed to water whereas the long one is attributed to lipids from oil bodies. Images of two dry seeds, one of pea and the other of radish, show marked differences in the distribution of NMR signal intensity, which suggest a different distribution of oil bodies.  相似文献   

8.
Proton magnetic resonance (PMR) relaxation times were measured for dissected malignant and normal tissue derived from breast cancer patients. Relaxation time measurements (T1, T2) were carried out at a RF frequency of 20 MHz and at a temperature of 27 degrees C with a Brucker PC 120 NMR Process analyser. The tissue types were confirmed by histopathological examination. In general T1 values were found to be longer for malignant tissues as compared to normal tissues which is in agreement with the earlier observations. The measured T2 values do not exhibit the malignant tissues above. The percentage of water content was also measured in both normal and malignant tissue and was found to be considerably larger in tumour tissue as compared to normal tissue. These results are discussed on the basis of two fraction fast exchange models of water molecules and confirm that PMR relaxation time measurement plays an important role in the differentiation of cancerous tissues from that of normal.  相似文献   

9.
Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to analyse changes in the physical state of water in wheat crowns during cold acclimation and during the freezing/thawing cycle. Spectroscopically measured average spin-spin relaxation times (T2) decreased during cold acclimation and increased when plants were grown at normal temperature. Spin-spin relaxation images whose contrast is proportional to T2, times were calculated allowing association of water relaxation with regions of tissue in spin-echo images during acclimation and freezing. Images taken during freezing revealed nonuniform freezing of tissue in crowns and roots. Acclimated and non-acclimated wheat crowns were imaged during freezing and after thawing. Spin-echo image signal intensity and T2 times decreased dramatically between -4°C and -8°C as a result of a decrease in water mobility during freezing. Images collected during thawing were diffuse with less structure and relaxation times were longer, consistent with water redistribution in tissue after membrane damage.  相似文献   

10.
Differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy are applied to characterize the nonfreezable water molecules in fully hydrated D2O/sphingomyelin at temperatures below 0 degrees C. Upon cooling, DSC thermogram displays two thermal transitions peaked at -11 and -34 degrees C. The high-temperature exothermic transition corresponds to the freezing of the bulk D2O, and the low-temperature transition, which has not previously been reported, can be ascribed to the freezing of the phosphocholine headgroup in the lipid bilayer. The dynamics of nonfreezable water are also studied by 2H NMR T1 (spin-lattice relaxation time) and T2e (spin-spin relaxation time obtained by two pulse echo) measurements at 30.7 MHz and at temperatures down to -110 degrees C. The temperature dependence of the T1 relaxation time is characterized by a distinct minimum value of 2.1 +/- 0.1 ms at -30 degrees C. T2e is discontinuous at temperature around -70 degrees C, indicating another freezing-like event for the bound water at this temperature. Analysis of the relaxation data suggest that nonfreezable water undergoes both fast and slow motions at characteristic NMR time scales. The slow motions are affected when the lipid headgroup freezes.  相似文献   

11.
Chen PM  Gusta LV 《Plant physiology》1978,61(6):878-882
Nuclear magnetic resonance (NMR) relaxation times were studied in acclimated and nonacclimated Kharkov winter wheat (Triticum aestivum L.) crowns and acclimated cell aggregates to determine if membrane permeability was altered by freezing. The NMR water signal decay consisted of two exponential components: a short one arising from extracellular water, and a long one arising from intracellular water. A slow freezethaw treatment of nonacclimated and 1-week acclimated crowns decreased the long relaxation time, suggesting membrane injury. Similar results were obtained for nonacclimated and acclimated crowns killed directly in liquid N2.

A significant increase in plasma membrane permeability to Mn2+ was observed in acclimated freeze-killed crowns and cell aggregates. Freezing injury to plant tissue appears to be a membrane-related phenomenon, but more extensive injury occurs to nonacclimated and acclimated tissue with a high water content (cell aggregates) compared to acclimated tissue with a low water content (crowns).

  相似文献   

12.
The alveolar air-tissue interface affects the lung NMR signal, because it results in a susceptibility-induced magnetic field inhomogeneity. The air-tissue interface effect can be detected and quantified by measuring the difference signal (Delta) from a pair of NMR images obtained using temporally symmetric and asymmetric spin-echo sequences. The present study describes a multicompartment alveolar model (consisting of a collection of noninteracting spherical water shells) that simulates the behavior of Delta as a function of the level of lung inflation and can be used to predict the NMR response to various types of lung injury. The model was used to predict Delta as a function of the inflation level (with the assumption of sequential alveolar recruitment, partly parallel to distension) and to simulate pulmonary edema by deriving equations that describe Delta for a collection of spherical shells representing combinations of collapsed, flooded, and inflated alveoli. Our theoretical data were compared with those provided by other models and with experimental data obtained from the literature. Our results suggest that NMR Delta measurements can be used to study the mechanisms underlying the lung pressure-volume behavior, to characterize lung injury, and to assess the contributions of alveolar recruitment and distension to the lung volume changes in response to the application of positive airway pressure (e.g., positive end-expiratory pressure).  相似文献   

13.
Spin-spin relaxation time (T2), spin-lattice relaxation time (T1), and spin-lattice relaxation time in the rotating frame (T1p) of water protons in solutions of bacteriophage T2 were studied by pulsed nuclear magnetic resonance. The frequency dependence of the measurements exhibits a dispersion implying existence of a fraction of water molecules in solution with a correlation time distribution centered at approximately 10(-5) sec which is strongly influenced by the reorientational motions of virus particles. Experiments were carried out with two forms of bacteriophage T2 existing at pH 5.4 and 7.8 respectively. The different structures of the virus at these two pH values are reflected in the NMR relaxation behavior of water protons.  相似文献   

14.
As nuclear magnetic resonance imaging techniques have developed, a need for agents which can enhance and improve the natural tissue relaxation time differences has become apparent. Especially valuable would be agents that differentially alter NMR images in a manner related to tissue physiology and disease processes. Sophisticated para-magnetic and free radical contrast agents will be discussed in other papers in this issue. However, in this report, some common agents which are currently used in research and in human clinical studies for other purposes, but which can alter NMR contrast will be discussed. These agents include olive oil, estrogen hormones, diuretics, ethanol, glycerin, and dimethyl sulfoxide. Measurements of their relative effects on T1 and T2 of normal and cancerous breast tissues, a variety of body organs, and brain are presented. Some of these agents may have immediate practical applications in human NMR imaging studies.  相似文献   

15.
Cholera enterotoxin has been postulated to change the configuration of the intracellular protein-water system, altering the permeability of the cell to water. Using nuclear magnetic resonance (NMR) spectroscopy, this protein-water relationship can be examined. Small intestinal loops in the rat were injected with 0.5 ml of either Schwarz/Mann cholera enterotoxin (40 mug/cc saline solution) or normal saline. Full thickness segments of intestine from each loop were taken and percentage water (using a gravimetric procedure which includes a correction for fat) and NMR relaxation times were determined. The mean value +/- S.D. for tissue water was 79.49 +/- 2.65% in the controls and 84.52 +/- 2.01% in the cholera specimens (p less than .001). T1 (spin-lattice) relaxation times were 521.22 +/- 69.5 msec in the controls and 667.96 +/- 119.25 msec in cholera tissue (p less than .001). T2 (spin-spin) relaxation times were 62.34 +/- 9.59 msec in controls and 80.35 +/- 21.46 msec in cholera tissue (p less than .02). These findings are consistent with the theory that cholera enterotoxin acts to alter intracellular protein-water relationship.  相似文献   

16.
Using magnetic resonance microscopy at 7 Tesla, spin-lattice relaxation times (Tl), spinspin relaxation times (T2), and spin densities (N(H)) of live squash stem tissues were measured in order to gain an understanding of live tissue water relations and to improve imaging protocols that allow the clear distinction of tissues. T1 and N(H) differences among tissues were found to be much greater than T2 differences. Most tissues can be distinguished with high resolution T1 weighted images. Sclerenchyma and vessel elements are more easily seen with N(H) weighted images because of the relatively low water content of sclerenchyma and high water content of vessel elements. This work demonstrates further improvements in the ability of MR microscopy to distinguish tissues and individual cells and also to make measurements regarding water status at the tissue and cellular level of live plants in a nondestructive manner.  相似文献   

17.
The effect of osmotic stress (-0.35 MPa) on the cell water balance and apical growth was studied non-invasively for maize (Zea mays L., cv. LG 11) and pearl millet (Pennisetum americanum L., cv. MH 179) by (1)H NMR microscopy in combination with water uptake measurements. Single parameter images of the water content and the transverse relaxation time (T(2)) were used to discriminate between the different tissues and to follow the water status of the apical region during osmotic stress. The T(2) values of non-stressed stem tissue turned out to be correlated to the cell dimensions as determined by optical microscopy. Growth was found to be strongly inhibited by mild stress in both species, whereas the water uptake was far less affected. During the experiment hardly any changes in water content or T(2) in the stem region of maize were observed. In contrast, the apical tissue of pearl millet showed a decrease in T(2) within 48 h of stress. This decrease in T(2) is interpreted as an increase in the membrane permeability for water.  相似文献   

18.
NMR-spin echo method has been used to study spin-lattice relaxation time of protons T1 in plant and animal cells ?? muscle tissue of fish, the cells of which unlike plant cells have no developed system of vacuoles, plastids and a solid cell wall. According to the values of T1 time a new NMR parameter K, a coefficient of relaxation effectiveness of a cell structure, has been calculated. This parameter can be used for quantitative characterization of the influence of different cell structures, the tissue water interact with, for a time of spin-lattice relaxation of water protons. It has been ascertained that the values of K coefficient in animal tissue and in storing tissues of some plants differ little; it may be stipulated by permanent transmembrane water exchange which occurs at high rate in the living cell. It has been concluded that there exists a certain similarity between water state in protoplast of plant and animal cells.  相似文献   

19.
We studied the spin-echo signal of muscle water in a large time domain and found that the motion of the nuclear magnetic moment of tissue water cannot be characterized by a single spin-lattice relaxation time (T1). The relaxation time T1B, which is the T1 characterized by those protons with a slower relaxation rate, is influenced by the early post mortem changes in skeletal muscle. T1B increased with time after the tissue was taken from the animal and reached a maximum at 3 h. However, the weighted average of T1 of all water protons (T1A) did not change throughout the time course of the experiments.  相似文献   

20.
The present study determined whether in vitro nuclear magnetic resonance could be used to assess experimentally induced colitis in rats. Acute colitis was induced in 6 Sprague-Dawley rats by acetic acid enema, while 6 control animals received saline enemas. All animals were sacrificed 24 hours post-enema, and NMR relaxation times, T1 and T2, of colonic samples were determined on a 10 MHz spin analyzer (RADX, Houston, TX). Colonic water content was determined on the same samples by desiccation. Colitis animals showed significantly higher T1 and T2 relaxation times and tissue water content than controls. T1 and T2 times correlated significantly with tissue water content. Twelve additional animals were studied histologically, six of which received acetic acid enemas and showed extensive transmural colitis. Our results suggest that in vivo proton NMR might be a useful means of non-invasively assessing the degree of colonic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号