共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Extracellular matrix (ECM) molecules constitute a "niche" that modulates the migration, proliferation, and differentiation of neural stem/progenitor cells (NSPCs). The glycoprotein Tenascin-R (TN-R) is an ECM molecule, comprising multiple domains. Either the whole TN-R molecule or its distinct domains has been demonstrated to play a very important role in the developing central nervous system. However, little is known about the effect of the TN-R domain on NSPCs, especially NSPC migration. In the present study, we first show that both TN-R domains epidermal growth factor-like repeat (EGFL) and fibronectin type III (FN)6-8 can inhibit the NSPCs migration from neurospheres in vitro. Furthermore, both the EGFL and FN6-8 domains affect the distribution of neurons generated from neurospheres, indicating that EGFL and FN6-8 domains inhibit the motility of neurons generated from neurospheres. These results suggest that TN-R has an inhibitory effect on NSPCs migration. 相似文献
3.
Excitation-neurogenesis coupling in adult neural stem/progenitor cells 总被引:25,自引:0,他引:25
A wide variety of in vivo manipulations influence neurogenesis in the adult hippocampus. It is not known, however, if adult neural stem/progenitor cells (NPCs) can intrinsically sense excitatory neural activity and thereby implement a direct coupling between excitation and neurogenesis. Moreover, the theoretical significance of activity-dependent neurogenesis in hippocampal-type memory processing networks has not been explored. Here we demonstrate that excitatory stimuli act directly on adult hippocampal NPCs to favor neuron production. The excitation is sensed via Ca(v)1.2/1.3 (L-type) Ca(2+) channels and NMDA receptors on the proliferating precursors. Excitation through this pathway acts to inhibit expression of the glial fate genes Hes1 and Id2 and increase expression of NeuroD, a positive regulator of neuronal differentiation. These activity-sensing properties of the adult NPCs, when applied as an "excitation-neurogenesis coupling rule" within a Hebbian neural network, predict significant advantages for both the temporary storage and the clearance of memories. 相似文献
4.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy. 相似文献
5.
6.
To access and compare gene expression in fetal neuroepithelial cells (NEPs) and progenitor cells, we have used microarrays containing approximately 500 known genes related to cell cycle regulation, apoptosis, growth and differentiation. We have identified 152 genes that are expressed in NEPs and 209 genes expressed by progenitor cells. The majority of genes (141) detected in NEPs are also present in progenitor populations. There are 68 genes specifically expressed in progenitors with little or no expression in NEPs, and a few genes that appear to be present exclusively in NEPs. Using cell sorting, RT-PCR, in situ hybridization or immunocytochemistry, we have examined the segregation of expression to neuronal and glial progenitors, and identified several that appeared to be enriched in neuronal (e.g. CDK5, neuropilin, EphrinB2, FGF11) or glial (e.g. CXCR4, RhoC, CD44, tenascin C) precursors. Our data provide a first report of gene expression profiles of neural stem and progenitor cells at early stages of development, and provide evidence for the potential roles of specific cell cycle regulators, chemokines, cytokines and extracellular matrix molecules in neural development and lineage segregation. 相似文献
7.
Jinhong Shi Haoming Li Guohua Jin Peipei Zhu Meiling Tian Jianbing Qin Xuefeng Tan Shuqing Zhao Fuyu Wang Yurong Hua Yong Xiao 《In vitro cellular & developmental biology. Animal》2012,48(10):603-609
Lhx8, also named L3, is a recently identified member of the LIM homeobox gene family. Previously, we found acetylcholinesterase (AChE)-positive cells in fimbria?Cfornix (FF) transected rat hippocampal subgranular zone (SGZ). In the present study, we detected choline acetyltransferase (ChAT)-positive cholinergic cells in hippocampal SGZ after FF transaction, and these ChAT-positive cells were double labeled by Lhx8. Then we overexpressed Lhx8 during neural differentiation of hippocampal neural stem/progenitor cells on adherent conditions using lentivirus Lenti6.3-Lhx8. The result indicated that overexpression of Lhx8 did not affect the proportion of MAP2-positive neurons, but increased the proportion of ChAT-positive cells in vitro. These results suggested that FF-transected hippocampal niche promoted the ChAT/Lhx8-positive cholinergic neurons generation in rodent hippocampus, and Lhx8 was not associated with the MAP2-positive neurons differentiation on adherent conditions, but played a role in the specification of cholinergic neurons derived from hippocampal neural stem/progenitor cells in vitro. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(19):3550-3554
It has long been argued that cell cycle regulators such as cyclins, cyclin-dependent kinases and their inhibitors affect the fate of neuronal progenitor cells. Recently, we identified that cyclin D2, which localizes at the basal tip of the radial glial cell (i.e., the neural progenitor in the developing neocortex), functions to give differential cell fates to its daughter cells just after cell division. This basally biased localization is due to transportation of cyclin D2 mRNA via its unique cis-regulatory sequence and local translation into cyclin D2 protein at the basal endfoot. During division of the neural progenitor cells, cyclin D2 protein is inherited by the daughter cell that retain the basal process, resulting in asymmetric distribution of cyclin D2 protein between the two daughter cells. Cyclin D2 is similarly localized in the human fetal cortical primordium, suggesting a common mechanism for the maintenance of neural progenitors and a possible scenario in evolution of primate brains. Here we introduce our recent findings and discuss how cyclin D2 functions in mammalian brain development and evolution. 相似文献
9.
Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures 总被引:2,自引:0,他引:2
Dhara SK Hasneen K Machacek DW Boyd NL Rao RR Stice SL 《Differentiation; research in biological diversity》2008,76(5):454-464
Derivation of human neural progenitors (hNP) from human embryonic stem (hES) cells in culture has been reported with the use of feeder cells or conditioned media. This introduces undefined components into the system, limiting the ability to precisely investigate the requirement for factors that control the process. Also, the use of feeder cells of non-human origin introduces the potential for zoonotic transmission, limiting its clinical usefulness. Here we report a feeder-free system to produce hNP from hES cells and test the effects of various media components involved in the process. Five protocols using defined media components were compared for efficiency of hNP generation. Based on this analysis, we discuss the role of basic fibroblast growth factor (FGF2), N2 supplement, non-essential amino acids (NEAA), and knock-out serum replacement (KSR) on the process of hNP generation. All protocols led to down-regulation of Oct4/POU5F1 expression (from 90.5% to <3%), and up-regulation of neural progenitor markers to varying degrees. Media with N2 but not KSR and NEAA produced cultures with significantly higher (p<0.05) expression of the neural progenitor marker Musashi 1 (MSI1). Approximately 89% of these cells were Nestin (NES)+ after 3 weeks, but they did not proliferate. In contrast, differentiation media supplemented with KSR and NEAA produced fewer NES+ (75%) cells, but these cells were proliferative, and by five passages the culture consisted of >97% NES+ cells. This suggests that KSR and NEAA supplements did not enhance early differentiation but did promote proliferating of hNP cell cultures. This resulted in an efficient, robust, repeatable differentiation system suitable for generating large populations of hNP cells. This will facilitate further study of molecular and biochemical mechanisms in early human neural differentiation and potentially produce uniform neuronal cells for therapeutic uses without concern of zoonotic transmission from feeder layers. 相似文献
10.
Jia Liu Cecilia Götherström Magda Forsberg Eva-Britt Samuelsson Jiang Wu Cinzia Calzarossa Outi Hovatta Erik Sundström Elisabet Åkesson 《Stem cell research》2013,10(3):325-337
To develop cell therapies for damaged nervous tissue with human neural stem/progenitor cells (hNPCs), the risk of an immune response and graft rejection must be considered. There are conflicting results and lack of knowledge concerning the immunocompetence of hNPCs of different origin. Here, we studied the immunogenicity and immunomodulatory potentials of hNPCs cultured under equivalent conditions after derivation from human embryonic stem cells (hESC-NPCs) or human fetal spinal cord tissue (hfNPCs). The expression patterns of human leukocyte antigen, co-stimulatory and adhesion molecules in hESC-NPCs and hfNPCs were relatively similar and mostly not affected by inflammatory cytokines. Unstimulated hfNPCs secreted more transforming growth factor-β1 (TGF-β1) and β2 but similar level of interleukin (IL)-10 compared to hESC-NPCs. In contrast to hfNPCs, hESC-NPCs displayed 4–6 fold increases in TGF-β1, TGF-β2 and IL-10 under inflammatory conditions. Both hNPCs reduced the alloreaction between allogeneic peripheral blood mononuclear cells (PBMCs) and up-regulated CD4+CD25+forkhead box P3 (FOXP3)+ T cells. However, hESC-NPCs but not hfNPCs dose-dependently triggered PBMC proliferation, which at least partly may be due to TGF-β signaling. To conclude, hESC-NPCs and hfNPCs displayed similarities but also significant differences in their immunocompetence and interaction with allogeneic PBMCs, differences may be crucial for the outcome of cell therapy. 相似文献
11.
12.
13.
Zhuang P Zhang Y Cui G Bian Y Zhang M Zhang J Liu Y Yang X Isaiah AO Lin Y Jiang Y 《PloS one》2012,7(4):e35636
Background
Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates.Methodology and Principal Findings
We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. Ly294002Significance
Sal B could maintain the NSPCs self-renew and promote proliferation, which was mediated by PI3K/Akt signal pathway. And delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. These findings suggested that Sal B may act as a potential drug in treatment of brain injury or neurodegenerative diseases. 相似文献14.
Leonardo D’Aiuto Yun Zhi Dhanjit Kumar Das Madeleine R Wilcox Jon W Johnson Lora McClain Matthew L MacDonald Roberto Di Maio Mark E Schurdak Paolo Piazza Luigi Viggiano Robert Sweet Paul R Kinchington Ayantika G Bhattacharjee Robert Yolken Vishwajit L Nimgaonka 《Organogenesis》2014,10(4):365-377
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases. 相似文献
15.
In vitro and in vivo characterization of neural stem cells 总被引:9,自引:0,他引:9
Bazán E Alonso FJ Redondo C López-Toledano MA Alfaro JM Reimers D Herranz AS Paíno CL Serrano AB Cobacho N Caso E Lobo MV 《Histology and histopathology》2004,19(4):1261-1275
Neural stem cells are defined as clonogenic cells with self-renewal capacity and the ability to generate all neural lineages (multipotentiality). Cells with these characteristics have been isolated from the embryonic and adult central nervous system. Under specific conditions, these cells can differentiate into neurons, glia, and non-neural cell types, or proliferate in long-term cultures as cell clusters termed neurospheres. These cultures represent a useful model for neurodevelopmental studies and a potential cell source for cell replacement therapy. Because no specific markers are available to unequivocally identify neural stem cells, their functional characteristics (self-renewal and multipotentiality) provide the main features for their identification. Here, we review the experimental and ultrastructural studies aimed at identifying the morphological characteristics and the antigenic markers of neural stem cells for their in vitro and in vivo identification. 相似文献
16.
17.
DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects. 相似文献
18.
Tsutomu Shimura Megumi Sasatani Hidehiko Kawai Kenji Kamiya Junya Kobayashi Kenshi Komatsu 《Cell cycle (Georgetown, Tex.)》2017,16(6):565-573
Mitochondria play a key role in maintaining cellular homeostasis during stress responses, and mitochondrial dysfunction contributes to carcinogenesis, aging, and neurologic disease. We here investigated ionizing radiation (IR)-induced mitochondrial damage in human neural progenitor stem cells (NSCs), their differentiated counterparts and human normal fibroblasts. Long-term fractionated radiation (FR) with low doses of X-rays for 31 d enhanced mitochondrial activity as evident by elevated mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity to fill the energy demands for the chronic DNA damage response in differentiated cells. Subsequent reduction of the antioxidant glutathione via continuous activation of mitochondrial oxidative phosphorylation caused oxidative stress and genomic instability in differentiated cells exposed to long-term FR. In contrast, long-term FR had no effect on the mitochondrial activity in NSCs. This cell type showed efficient DNA repair, no mitochondrial damage, and resistance to long-term FR. After high doses of acute single radiation (SR) (> 5 Gy), cell cycle arrest at the G2 phase was observed in NSCs and human fibroblasts. Under this condition, increase in mitochondria mass, mitochondrial DNA, and intracellular reactive oxygen species (ROS) levels were observed in the absence of enhanced mitochondrial activity. Consequently, cellular senescence was induced by high doses of SR in differentiated cells.
In conclusion, we demonstrated that mitochondrial radiation responses differ according to the extent of DNA damage, duration of radiation exposure, and cell differentiation. 相似文献
19.
20.
Apart from the psychotropic compound Δ9-tetrahydrocannabinol (THC), evidence suggests that other non-psychotropic phytocannabinoids are also of potential clinical use. This study aimed at elucidating the effect of major non-THC phytocannabinoids on the fate of adult neural stem progenitor cells (NSPCs), which are an essential component of brain function in health as well as in pathology. We tested three compounds: cannabidiol, cannabigerol, and cannabichromene (CBC), and found that CBC has a positive effect on the viability of mouse NSPCs during differentiation in vitro. The expression of NSPC and astrocyte markers nestin and Glial fibrillary acidic protein (GFAP), respectively, was up- and down-regulated, respectively. CBC stimulated ERK1/2 phosphorylation; however, this effect had a slower onset in comparison to typical MAPK stimulation. A MEK inhibitor, U0126, antagonized the up-regulation of nestin but not the down-regulation of GFAP. Based on a previous report, we studied the potential involvement of the adenosine A1 receptor in the effect of CBC on these cells and found that the selective adenosine A1 receptor antagonist, DPCPX, counteracted both ERK1/2 phosphorylation and up-regulation of nestin by CBC, indicating that also adenosine is involved in these effects of CBC, but possibly not in CBC inhibitory effect on GFAP expression. Next, we measured ATP levels as an equilibrium marker of adenosine and found higher ATP levels during differentiation of NSPCs in the presence of CBC. Taken together, our results suggest that CBC raises the viability of NSPCs while inhibiting their differentiation into astroglia, possibly through up-regulation of ATP and adenosine signalling. 相似文献