共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of ferritin from apoferritin. Catalytic action of apoferritin 总被引:1,自引:6,他引:1
下载免费PDF全文

The iron-storage protein ferritin consists of a protein shell and has an iron content of up to 4500 iron atoms as a microcrystalline ferric oxide hydrate. A study was made of the uptake of ferrous iron by apoferritin in the presence of an oxidizing agent at very low iron:protein ratios. At ratios of less than about 150 iron atoms per apoferritin molecule hyperbolic progress curves were obtained, whereas at higher ratios the curves became sigmoidal under the conditions used. A computer model, developed previously (Macara et al., 1972), was shown to account for this result. The experimental evidence indicates that apoferritin binds ferrous iron and catalyses the initial stage in the formation of the ferric oxide hydrate inside the protein shell. This stage involves the oxidation of sufficient iron within the protein molecule to form a stable nucleus on which the growth of the microcrystalline iron-core particles can proceed. A possible schematic mechanism for the action of apoferritin is suggested. 相似文献
2.
The formation of ferritin from apoferritin. Inhibition and metal ion-binding studies 总被引:1,自引:2,他引:1
下载免费PDF全文

Inhibition by Zn(2+) of iron uptake by apoferritin at very low substrate concentrations is shown to be competitive. It is proposed that Zn(2+) competes with Fe(2+) for sites on the protein at which the oxidation of Fe(2+) is catalysed. Interpretation of titration data suggests there are two independent classes of binding site for Zn(2+) and several other cations. Sites in one such class are probably on the external surface of the apoferritin molecule. The catalytic binding sites are presumed to be internal and may involve histidine or possibly cysteine as ligands. 相似文献
3.
4.
Porcine ferritin and apoferritin were purified to a greater degree of homogeneity than has been reported previously. Porcine ferritin was insoluble in the absence of a reducing agent, possessed a high content of iron, with an average ratio of ~2.5, and contained almost no detectable endogenous apoferritin. The amino acid composition, ultraviolet-absorption spectrum, and ultraviolet-circular dichroism spectrum of porcine apoferritin are very similar to the respective parameters of equine apoferritin. The native and subunit molecular weights of porcine apoferritin are 503,000 and 20,000, respectively. 相似文献
5.
The out-exchange kinetics of tritium from apoferritin, ferritin of various iron contents, and apoferritin subunits were examined. The exchange kinetics indicated no detectable conformational differences in the tetracosamer with and without hydrous ferric oxide in the internal cavity of the molecule. The data for apoferritin subunits were markedly different from those for the tetracosameric state. The exchange kinetics for apoferritin were consistent with a rapid exchange of water between the internal cavity of the protein and the bulk solvent outside the protein shell. 相似文献
6.
Koichi Orino Seiichi Kamura Masahiro Natsuhori Shinji Yamamoto Kiyotaka Watanabe 《Biometals》2002,15(1):59-63
Iron incorporation by bovine spleen apoferritin either with ferrous ammonium sulfate in different buffers or with ferrous ammonium sulfate and phosphate was studied. Iron uptake and iron autoxidation were recorded spectrophotomerically. The buffers [4-(2-hydroxyethyl)-1-piperazinyl]ethanesulphonic acid (Hepes) and tris(hydroxymethyl)aminoethane (Tris) exhibited pH-dependent iron autoxidation, with Tris showing less iron autoxidation than Hepes. An Eadie-Scatchard plot (v/[s] versus v) of the iron uptake rate in Hepes was a curved rather than a straight line, suggesting that there are two iron uptake pathways. On the other hand, the Eadie-Scatchard plots of Tris and of Hepes after the addition of phosphate showed a straight line. Phosphate accelerated the iron uptake rate. The iron loading kinetics of apoferritin in Hepes was dependent on apoferritin concentration. The Km value obtained from iron uptake kinetics was 4.5 M, corresponding to the physiological iron concentration. These results demonstrate that iron loading of apoferritin was accomplished at physiological iron concentrations, which is essential for iron uptake, via two uptake pathways of dependent on iron concentration. 相似文献
7.
Microheterogeneity of horse spleen ferritin and apoferritin 总被引:3,自引:0,他引:3
I Urushizaki Y Niitsu K Ishitani M Matsuda M Fukuda 《Biochimica et biophysica acta》1971,243(2):187-192
8.
We have reinvestigated the association and dissociation of ferritin and apoferritin in phosphate buffer (pH 7.2, I = 0.05). When oligomer-enriched solutions of horse spleen ferritin were mixed with more concentrated, but unenriched solutions of horse spleen apoferritin, there was dissociation of the ferritin oligomers, as determined by polyacrylamide gel electrophoresis and from iron/protein ratios. Some evidence was also obtained for association of monomers in the mixture of ferritin and apoferritin after pelleting and redissolution of pellets in minimal volumes of the phosphate buffer. Monomer-enriched, biosynthetically labeled rat liver ferritin was pelleted, redissolved in minimal volumes of phosphate buffer, and separated by polyacrylamide gel electrophoresis; the fractions were isolated and counted. The results revealed that an association of monomers of the rat liver ferritin had taken place which doubled the concentration of dimers. However, our results also indicate that association by concentration was limited to a fraction of monomers. 相似文献
9.
10.
Nitrogen monoxide (NO) is a cytotoxic effector molecule produced by macrophages that results in Fe mobilization from tumour target cells which inhibits DNA synthesis and mitochondrial respiration. It is well known that NO has a high affinity for Fe, and we showed that NO-mediated Fe mobilization is markedly potentiated by glutathione (GSH) generated by the hexose monophosphate shunt [Watts, R.N. & Richardson, D.R. (2001) J. Biol. Chem. 276, 4724-4732]. We hypothesized that GSH completes the coordination shell of an NO[bond]Fe complex that is released from the cell. In this report we have extended our studies to further characterize the mechanism of NO-mediated Fe mobilization. Native PAGE 59Fe-autoradiography shows that NO decreased ferritin-59Fe levels in cells prelabelled with [59Fe]transferrin. In prelabelled cells, ferritin-59Fe levels increased 3.5-fold when cells were reincubated with control media between 30 and 240 min. In contrast, when cells were reincubated with NO, ferritin-59Fe levels decreased 10-fold compared with control cells after a 240-min reincubation. However, NO could not remove Fe from ferritin in cell lysates. Our data suggest that NO intercepts 59Fe on route to ferritin, and indirectly facilitates removal of 59Fe from the protein. Studies using the GSH-depleting agent, L-buthionine-(S,R)-sulphoximine, indicated that the reduction in ferritin-59Fe levels via NO was GSH-dependent. Competition experiments with NO and permeable chelators demonstrated that both bind a similar Fe pool. We suggest that NO requires cellular metabolism in order to effect Fe mobilization and this does not occur via passive diffusion down a concentration gradient. Based on our results, we propose a model of glucose-dependent NO-mediated Fe mobilization. 相似文献
11.
Haem binding to horse spleen ferritin and Pseudomonas aeruginosa bacterioferritin has been studied by spectroscopic methods. A maximum of 16 haems per ferritin molecule, and 24 haems per bacterioferritin molecule, has been shown to bind. The influence of the bound haem on the rate of reductive iron release has been investigated. With a range of reductants and in the absence of haem the rate of release varied with the reductant, but in the presence of haem the rate was both independent of the reductant and faster than with any of the reductants alone. This indicates the rate-limiting step for iron release in the absence of haem was electron-transfer across the protein shell. Based on the results obtained with the in vitro assay system and from a consideration of data currently in the literature, plausible schemes for ferritin and bacterioferritin iron uptake and release are described. 相似文献
12.
13.
14.
Dynamic equilibria in iron uptake and release by ferritin 总被引:7,自引:0,他引:7
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5
m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations. 相似文献
15.
Kinetics of iron release from pig spleen ferritin with bare platinum electrode reduction 总被引:3,自引:0,他引:3
Several anaerobic electrochemical cells were employed to study the kinetics of iron release from pig spleen ferritin (PSF) at a bare platinum electrode. Controlled potential microcoulometry (CPM) is the principal technology used to investigate the kinetics in the absence of a mediator. A kinetic study of iron release by microcoulometry has revealed that ferritin undergoes direct electron transfer at the electrode in the absence of a mediator, indicating that ferritin is an electroactive protein. Several experiments failed to show that alpha'alpha-bipyridyl has the capacity to reduce hydrolyzed Fe(3+) within the ferritin core after it has been reduced by the electrode at -600 mV vs. NHE in the absence of mediator. PSF is known to bind heme to generate a hemeoprotein, named pig spleen hemeoferritin (PSF(ho)). The rate of iron release is accelerated by the heme binding to PSF(ho) without the need for small mediators. Under similar conditions, two kinetic processes for iron release from PSF and bacterial ferritin of Azoaobacter vinelandii (AvBF) were studied and both fit a zero-order law. In addition, the rate of iron release in PSF can be accelerated two-fold by a specific reduction system consisting of ascorbic acid (AA) and the bare platinum electrode at -600 mV. However, this kinetic process does not follow zero-, half-, first, or second-order rate laws. A model is proposed to explain a mechanism of direct electron transfer between ferritin and the electrode is derived to describe the kinetics of iron release. 相似文献
16.
Aminoacetone (AA) is a threonine and glycine metabolite overproduced and recently implicated as a contributing source of methylglyoxal (MG) in conditions of ketosis. Oxidation of AA to MG, NH4+, and H
2O
2has been reported to be catalyzed by a copper-dependent semicarbazide sensitive amine oxidase (SSAO) as well as by copper- and iron ion-catalyzed reactions with oxygen. We previously demonstrated that AA-generated O2•al (AA
•) induce dose-dependent Fe(II) release from horse spleen ferritin (HoSF); no reaction occurs under nitrogen. In the present study we further explored the mechanism of iron release and the effect of AA on the ferritin apoprotein. Iron chelators such as EDTA, ATP and citrate, and phosphate accelerated AA-promoted iron release from HoSF, which was faster in horse spleen isoferritins containing larger amounts of phosphate in the core. Incubation of apoferritin with AA (2.5-50 mM, after 6 h) changes the apoprotein electrophoretic behavior, suggesting a structural modification of the apoprotein by AA-generated ROS. Superoxide dismutase (SOD) was able to partially protect apoferritin from structural modification whereas catalase, ethanol, and mannitol were ineffective in protection. Incubation of apoferritin with AA (1-10 mM) produced a dose-dependent decrease in tryptophan fluorescence (13-30%, after 5 h), and a partial depletion of protein thiols (29% after 24 h). The AA promoted damage to apoferritin produced a 40% decrease in apoprotein ferroxidase activity and an 80% decrease in its iron uptake ability. The current findings of changes in ferritin and apoferritin may contribute to intracellular iron-induced oxidative stress during AA formation in ketosis and diabetes mellitus. 相似文献
17.
Biofortification of staple foods with iron (Fe) in the form of ferritin (Ft) is now possible, both by conventional plant breeding methods and transgenic approaches. Ft-Fe from plants and animals is absorbed well (25-30%) by human subjects, but little is known about dietary factors affecting its absorption. We used human intestinal Caco-2 cells and compared Fe absorption from animal Ft and FeSO4 to determine the effects of inhibitors and enhancers, such as phytic acid, ascorbic acid, tannic acid, calcium and heme. When postconfluent cells were coincubated with 59Fe-labeled (1 microM) FeSO4 and dietary factors, at different molar ratios of dietary factor to Fe (phytic acid:Fe, 10:1; ascorbic acid:Fe, 50:1; tannic acid:Fe, 50:1; calcium:Fe, 10:1 and hemin:Fe, 10:1), all inhibited uptake from FeSO4, except ascorbate, confirming earlier studies. In contrast, these dietary factors had little or no effect on Fe uptake from undigested Ft or Ft digested in vitro at pH 4, except tannins. However, results after in vitro digestion of Ft at pH 2 were similar to those obtained for FeSO4. These results suggest that Fe uptake occurs from both undigested as well as digested Ft but, possibly, via different mechanisms. The Fe-Ft stability shown here could minimize Fe-induced oxidation of Fe-supplemented food products. 相似文献
18.
The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. 总被引:1,自引:0,他引:1
下载免费PDF全文

Plasma-membrane fractions were prepared from the livers of rats injected with 0.15 M-NaCl (controls) or vasopressin (1 nmol/kg body wt.). When assayed in the presence of deoxycholate, vasopressin increased the Vmax. of plasma-membrane diacylglycerol kinase 2-4-fold, and the apparent Km of the enzyme for 1,2-dioleoyl-sn-glycerol was doubled. The effect of vasopressin on the Vmax. of plasma-membrane diacylglycerol kinase was twice as great between pH 7 and 8.5 than at pH 6 or 6.5. Vasopressin doubled the activity of diacylglycerol kinase in the plasma-membrane fraction when the enzyme was assayed with phosphatidylserine rather than deoxycholate as stimulator, and when either 1-stearoyl-2-arachidonoyl-sn-glycerol or 1,2-dioleoyl-sn-glycerol was the substrate. In perfused livers vasopressin (10 nM) increased the Vmax. of plasma-membrane diacylglycerol kinase 2-fold, and phenylephrine (3 microM) gave a similar effect. Vasopressin doubled diacylglycerol kinase activity in hepatocytes that had been preincubated for 55 min, but not in cells that had only been preincubated for 15 min. 相似文献
19.
The mechanism of iron uptake in Bacillus subtilis 总被引:7,自引:0,他引:7
20.
V. Herynek J. W. M. Bulte T. Douglas R. A. Brooks 《Journal of biological inorganic chemistry》2000,5(1):51-56
We introduce dynamic relaxometry as a novel technique for studying biochemical reactions, such as those leading to mineral formation (biomineralization). This technique was applied to follow the time course of iron oxidation and hydrolysis by the protein ferritin. Horse spleen apoferritin was loaded with single additions of 4, 10, 20, 40, and 100 ferrous ions per protein, and with multiple additions of 4, 10, 20, and 100 ferrous ions. The NMR T2 relaxation time was then measured sequentially and continuously for up to 24 h. At low loading factors of 4-10 Fe atoms/molecule, the iron is rapidly bound and oxidized by the protein on a time scale of approximately 15 s to several minutes. At intermediate loading factors (10-40), rapid initial oxidation was observed, followed by the formation of antiferromagnetic clusters. This process occurred at a much slower rate and continued for up to several hours, but was inhibited at lower pH values. At higher loading factors (40-1000), iron oxidation may occur directly on the core, and this process may continue for up to 24 h following the initial loading. Dynamic relaxometry appears to be a potentially powerful technique that may well have applications beyond the study of iron uptake by the ferritin protein. 相似文献