首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3–4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.  相似文献   

2.
Neural progenitors from human embryonic stem cells.   总被引:36,自引:0,他引:36  
The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages--astrocytes, oligodendrocytes, and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution, and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.  相似文献   

3.
Neural stem cells, which are clonogenic cells with multilineage differentiation properties from regions of the fetal brain, cortex and hippocampus, are currently considered as powerful candidates for cell replacement therapy in neurodegenerative disorders, such as Parkinson's disease. A key issue is whether stem cells can survive, migrate and differentiate following transplantation into the adult CNS. Here, enhanced green fluorescent protein plasmid electroporation-transfected neural stem cells from the fetal cortex were grafted into the striatum of a rat model of Parkinson's disease. We found most of the grafted cells could survive in the adult parkinsonian rat brain and migrated towards damaged areas, while they moved randomly in the normal brain. Several grafted cells differentiated into neurons.  相似文献   

4.
In the present study, induced pluripotent stem cells (iPSCs), induced neural stem cells (iNSCs), mesenchymal stem cells (MSCs) and an immortalized cell line (RMNE6), representing different characteristics of stem cells, were transplanted into normal and/or injured brain areas of rodent stroke models, and their effects were compared to select suitable stem cells for cell replacement stroke therapy. The rat and mice ischaemic models were constructed using the middle cerebral artery occlusion technique. Both electrocoagulation of the artery and the intraluminal filament technique were used. The behaviour changes and fates of grafted stem cells were determined mainly by behaviour testing and immunocytochemistry. Following iPSC transplantation into the corpora striata of normal mice, a tumour developed in the brain. The iNSCs survived well and migrated towards the injured area without differentiation. Although there was no tumourigenesis in the brain of normal or ischaemic mice after the iNSCs were transplanted in the cortices, the behaviour in ischaemic mice was not improved. Upon transplanting MSC and RMNE6 cells into ischaemic rat brains, results similar to iNSCs in mice were seen. However, transplantation of RMNE6 caused a brain tumour. Thus, tumourigenesis and indeterminate improvement of behaviour are challenging problems encountered in stem cell therapy for stroke, and the intrinsic characteristics of stem cells should be remodelled before transplantation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Pluripotency and their neural crest origin make dental pulp stem cells (DPSCs) an attractive donor source for neuronal cell replacement. Despite recent encouraging results in this field, little is known about the integration of transplanted DPSC derived neuronal pecursors into the central nervous system. To address this issue, neuronally predifferentiated DPSCs, labeled with a vital cell dye Vybrant DiD were introduced into postnatal rat brain. DPSCs were transplanted into the cerebrospinal fluid of 3-day-old male Wistar rats. Cortical lesion was induced by touching a cold (−60 °C) metal stamp to the calvaria over the forelimb motor cortex. Four weeks later cell localization was detected by fluorescent microscopy and neuronal cell markers were studied by immunohistochemistry. To investigate electrophysiological properties of engrafted, fluorescently labeled DPSCs, 300 μm-thick horizontal brain slices were prepared and the presence of voltage-dependent sodium and potassium channels were recorded by patch clamping.Predifferentiated donor DPSCs injected into the cerebrospinal fluid of newborn rats migrated as single cells into a variety of brain regions. Most of the cells were localized in the normal neural progenitor zones of the brain, the subventricular zone (SVZ), subgranular zone (SGZ) and subcallosal zone (SCZ). Immunohistochemical analysis revealed that transplanted DPSCs expressed the early neuronal marker N-tubulin, the neuronal specific intermediate filament protein NF-M, the postmitotic neuronal marker NeuN, and glial GFAP. Moreover, the cells displayed TTX sensitive voltage dependent (VD) sodium currents (INa) and TEA sensitive delayed rectifier potassium currents (KDR). Four weeks after injury, fluorescently labeled cells were detected in the lesioned cortex. Neurospecific marker expression was increased in DPSCs found in the area of the cortical lesions compared to that in fluorescent cells of uninjured brain. TTX sensitive VD sodium currents and TEA sensitive KDR significantly increased in labeled cells of the cortically injured area. In conclusion, our data demonstrate that engrafted DPSC-derived cells integrate into the host brain and show neuronal properties not only by expressing neuron-specific markers but also by exhibiting voltage dependent sodium and potassium channels. This proof of concept study reveals that predifferentiated hDPSCs may serve as useful sources of neuro- and gliogenesis in vivo, especially when the brain is injured.  相似文献   

6.
Lu WG  Chen H  Wang D  Li FG  Zhang SM 《生理学报》2007,59(1):51-57
全能区域非特异性的胚胎干细胞是研究成体不同脑区控制干细胞分化能力的十分有力的工具。胚胎干细胞源性神经前体细胞移植入成体脑后可分化为功能性神经元,但是未分化的胚胎干细胞在成体脑内各个部位的存活、生长与分化的潜能差异尚不清楚。本文旨在探讨成体脑组织对胚胎干细胞的影响及胚胎干细胞在成体脑内的一系列行为。将少量转绿色荧光蛋白未分化的小鼠胚胎干细胞移植入成体大鼠脑内不同部位,分别于移植5、14和28d后处死大鼠,进行形态学观察及免疫组化定性,以了解未分化的小鼠胚胎干细胞在大鼠脑内不同区域的存活、生长与分化。结果发现未分化的小鼠胚胎干细胞可逐步整合入受体组织并向nestin阳性神经前体细胞分化。移植细胞及其后裔在海马生长最为旺盛,而在隔区最差(P〈0.01);移植细胞分化为神经干细胞的效率也是在海马最高,而在隔区最低(P〈0.01)。提示只有部分脑区适合胚胎干细胞及其后裔生存,并提供促进其分化的有益环境。因此,由于位置特异的微环境因子及环境因素的存在,宿主组织特性对决定中枢神经系统疾病的细胞替代疗法策略是相当重要的。  相似文献   

7.
Effect of neurotrophic factors on neuronal stem cell death   总被引:3,自引:0,他引:3  
Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington\'s disease, Parkinson\'s disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.  相似文献   

8.
目的:探讨移植NAAG合酶(NAAG synthetase,NAAGS)基因修饰的神经干细胞(Neural Stem Cells,NSCs)能否促进创伤性颅脑损伤大鼠神经功能的恢复。方法:利用电穿孔转染大鼠NSCs,通过脑立体定向仪分别将PBS(模型组)、NSCs(NSCs组)、转基因NSCs(NAAGS+NSCs组)移植到创伤性颅脑损伤(Traumatic Brain Injury,TBI)大鼠局部损伤灶边缘,通过NSS评分评价移植后大鼠神经功能的变化以及用TUNEL法检测NSCs的凋亡情况,并采用放射免疫法分析脑组织中促炎因子水平。结果:Nss评分结果显示NAAGs+NSCs组和NSCs组在第7、14、21天神经功能评分均低于模型组(P〈0.05);NAAGS+NSCs组在第14和21天神经功能评分低于NSCs组(P〈0.05);在各时间点细胞移植组比模型组的神经细胞凋亡数明显减少;转基因NSCs移植能明显降低TBI脑组织中促炎因子水平。结论:转基因NSCs移植后可以合成NAAGS促进TBI大鼠神经功能的恢复。  相似文献   

9.
Neural stem cells (NSCs) can be isolated from nervous tissues or derived from embryonic stem cells. However, their procurement for clinical applications is limited, and there is a need for alternative types of cell that have NSCs properties. In the present study, the differentiation potential of rat adipose-derived stem cells (ADSCs) was evaluated by infecting these cells with a lentiviral vector-encoding green fluorescent protein (GFP). ADSCs transduced with lentivirus were able to generate NSC-like cells, without any effects on their growth, phenotype, and normal differentiation potential. NSC-like cells derived from ADSCs formed neurospheres and expressed high levels of the neural progenitor marker nestin. In the absence of selected growth factors, these neurospheres differentiated into neurons expressing NeuN and MAP2 and GFAP-expressing glia, as determined by immunocytochemistry, Western blotting, and quantitative real-time polymerase chain reaction. These results demonstrate that ADSCs can be induced to generate neurospheres that have NSC-like properties and may thus constitute a potential source of cells in stem cell therapy for neurological disorders.  相似文献   

10.
Behavior and Differentiation of the Neural Stem Cells in vivo   总被引:4,自引:0,他引:4  
We studied the behavior and differentiation of human and rat neural stem cells after transplantation in the adult rat brain without immunosuppression. The rat stem cells were isolated from the presumptive neocortex of 15-day-old embryos. The human cells were isolated from the ventricular brain zone of 9-week-old embryos and cultivated for two weeks before transplantation. The results of histomorphological studies suggest that the microenvironment factors did not suppress the growth or development of transplanted stem cells. Both rat and human embryonic multipotent neural cells showed similar behavior and differentiation into neurons and glial cells. After transplantation, they continued to mitotically divide and migrated from the graft area to the surrounding tissue of a recipient brain. The presumptive glial cells migrated preferentially along the capillaries and fibrous structures of the recipient brain. Similar behavior of the rat and human neural stem cells in the microenvironment of the recipient adult rat brain and the absence of immune reaction suggest that the transplantation into the rat brain may serve as a model for studying the developmental biology of the human stem cells.  相似文献   

11.
Neural stem and precursor cells reside in the ventricular lining of the fetal forebrain, and may provide a cellular substrate for brain repair. To selectively identify and extract these cells, we infected dissociated fetal human brain cells with adenoviruses bearing the gene for green fluorescence protein (GFP), placed under the control of enhancer/promoters for two genes (nestin and musashi1) that are expressed in uncommitted neuroepithelial cells. The cells were then sorted by fluorescence-activated cell sorting (FACS) on the basis of E/nestin- or P/musashi1-driven GFP expression. Both P/musashi1:hGFP- and E/nestin:EGFP-sorted cells were multipotent: limiting dilution with clonal expansion as neurospheres, in tandem with retroviral lineage analysis and xenograft to E17 and P0-2 rat forebrain, revealed that each phenotype was able to both self-renew and co-generate neurons and glia. Thus, fluorescent genes placed under the control of early neural promoters allow neural stem cells to be specifically targeted, isolated, and substantially enriched from the fetal human brain.  相似文献   

12.
Stem cell and niche development in the postnatal rat testis   总被引:4,自引:0,他引:4  
Adult tissue stem cells self-renew and differentiate in a way that exactly meets the biological demand of the dependent tissue. We evaluated spermatogonial stem cell (SSC) activity in the developing rat testis and the quality and accessibility of the stem cell niche in wild type, and two busulfan-treated models of rat pup recipient testes using an SSC transplantation technique as a functional assay. While our results revealed a 69-fold increase in stem cell activity during rat testis development from neonate to adult, only moderate changes in SSC concentration were observed, and stem cells from neonate, pup, and adult donor testes produce spermatogenic colonies of similar size. Analysis of the stem cell niche in recipient rat testes demonstrated that pup testes support high levels of donor stem cell engraftment when endogenous germ cells are removed or compromised by busulfan treatment. Fertility was established when rat pup donor testis cells were transplanted into fetal- or pup-busulfan-treated recipient rat pup testes, and the donor genotype was transmitted to subsequent generations. These results provide insight into stem cell/niche interactions in the rat testis and demonstrate that techniques originally developed in mice can be extended to other species for regenerative medicine and germline modification.  相似文献   

13.
Transplantation of neural progenitors or stem cells is a most useful tool to investigate the relative contribution of cell-autonomous mechanisms and environmental cues in the regulation of cell specification and differentiation during CNS development. To assess the capability of neocortical progenitor cells to integrate into foreign brain regions, here we examined the fate of precursor cells isolated from the dorsal telencephalon of E12 ß-actin-EGFP transgenic mouse embryos after heterotopic/heterochronic transplantation to the E16 rat brain in utero. Our observations show that donor cells were able to penetrate, survive and produce mature cell types into wide regions of the host CNS. Namely, EGFP-positive cells acquired site-specific neuronal identities in many telencephalic regions, including neocortex, hippocampus, olfactory bulb and corpus striatum. In contrast, incorporation into more caudal sites was much less efficient. A fraction of donor cells formed large aggregates that remained segregated from the host milieu. Such aggregates contained mature neurons and glia, including some EGFP-negative elements of host origin, and developed the complex organization of the mature nervous tissue. On the other hand, transplanted cells that engrafted in the parenchyma of extratelencephalic regions predominantly generated glial types. The few neurons failed to acquire obvious site-specific phenotypic traits and did not integrate into the local host architecture. Altogether, our observations indicate that E12 neocortical progenitors are already committed towards regional identities and are unable to modify their phenotypic choices when exposed to heterotopic environmental conditions along different rostro-caudal domains of the embryonic CNS.  相似文献   

14.
Transplantation of embryonic or stem cell derived neurons has been proposed as a potential therapy for several neurological diseases. Previous studies reported that transplanted embryonic neurons extended long-distance projections through the adult brain exclusively to appropriate targets. We transplanted E14 lateral ganglionic eminence (LGE) and E15 cortical precursors from embryonic mice into the intact adult brain and analyzed the projections formed by transplanted neurons. In contrast to previous studies, we found that transplanted embryonic neurons formed distinct long-distance projections to both appropriate and ectopic targets. LGE neurons transplanted into the adult striatum formed projections not only to the substantia nigra, a normal target, but also to the claustrum and through all layers of fronto-orbital cortex, regions that do not normally receive striatal input. In some cases, inappropriate projections outnumbered appropriate projections. To examine the relationship between the donor cells and host brain in establishing the pattern of projections, we transplanted cortical precursors into the adult striatum. Despite their heterotopic location, cortical precursors not only predominantly formed projections appropriate for cortical neurons, but they also formed projections to inappropriate targets. Transplantation of GFP-expressing cells into beta-galactosidase-expressing mice confirmed that the axonal projections were not created by the fusion of donor and host cells. These results suggest that repairing the brain using transplantation may be more complicated than previously expected, because exuberant ectopic projections could result in brain dysfunction. Understanding the signals regulating axonal extension in the adult brain will be necessary to harness stem cells or embryonic neurons for effective neuronal-replacement therapies.  相似文献   

15.
16.
Background aimsTherapeutic promises of adult stem cells have been overshadowed by an elicited immune response, low maintenance of implanted cells or concerns regarding their migration to non-target sites. These problems might be lessened by the use of immune privilege cells and tissues for implantation.MethodsIn this study, human adipose-derived mesenchymal stromal cells (hADMSCs) were stably transfected with a vector containing Turbo green fluorescent protein (GFP) and JRed, which allows tracing the cells after transplantation. Labeled hADMSCs were transplanted into the adult rat brain followed by assessment of their survival and migration during 6 months after transplantation.ResultsResults indicate that there were no postsurgical complications, and the animals thrived after transplantation. The lesions of the surgical process were remarkable at the first weeks, and a high number of transplanted cells were accumulated around them. Cell populations declined over time as they partly migrated away from the injection sites; nonetheless, they were detectable at each examination time point. Although the cells could survive and remain at the injection site for up to 6 months, some of them drifted to spleen, which is an indication of their ability to cross the blood-brain barrier.ConclusionsDespite the high survival rate of hADMSCs in the xenogenic condition, which is an ideal criterion in cell therapy, irregular migration tendency must be handled with caution.  相似文献   

17.
Stem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS) is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB) in specific brain regions. We used MRI guidance to target the ultrasound beam thereby delivering the iron-labeled, green fluorescent protein (GFP)-expressing neural stem cells specifically to the striatum and the hippocampus of the rat brain. Detection of cellular iron using MRI established that the cells crossed the BBB to enter the brain. After sacrifice, 24 hours later, immunohistochemical analysis confirmed the presence of GFP-positive cells in the targeted brain regions. We determined that the neural stem cells expressed common stem cell markers (nestin and polysialic acid) suggesting they survived after transplantation with MRIgFUS. Furthermore, delivered stem cells expressed doublecortin in vivo indicating the stem cells were capable of differentiating into neurons. Together, we demonstrate that transient opening of the BBB with MRIgFUS is sufficient for transplantation of stem cells from the blood to targeted brain structures. These results suggest that MRIgFUS may be an effective alternative to invasive intracranial surgery for stem cell transplantation.  相似文献   

18.
大鼠纹状体内移植神经干细胞的迁移分化行为   总被引:2,自引:0,他引:2  
本文分离培养胎鼠脑室下带区(SVZ)神经干细胞,经含绿色荧光蛋白基因(GFP)的2型重组腺相关病毒感染,获得具有GFP标记的神经干细胞。标记后的细胞移植到成年SD大鼠纹状体内。分别在移植后45天、90天、120天时,取移植大鼠全脑进行矢状连续冰冻切片观察。结果显示,在各时间段,移植位点始终能检测到标记细胞,但有相当数量的细胞远离移植位点向周围迁移。移植后45天,细胞迁移出现明显的方向性、迁移细胞成链式排列。移植后120天,明显观察到两条迁移路线:一条沿弧形路线向背后侧迁移到达胼胝体下缘;另一条向腹后侧迁移到达黑质,并有细胞绕过或穿过黑质到达大脑底端。免疫组织化学分析显示,迁移细胞呈现β-tubulinⅢ阳性。  相似文献   

19.
Radiation and chemotherapeutic drugs cause permanent sterility in male rats, not by killing most of the spermatogonial stem cells, but by blocking their differentiation in a testosterone-dependent manner. However, it is not known whether radiation induces this block by altering the germ or the somatic cells. To address this question, we transplanted populations of rat testicular cells containing stem spermatogonia and expressing the green fluorescent protein (GFP) transgene into various hosts. Transplantation of the stem spermatogonia from irradiated adult rats into the testes of irradiated nude mice, which do not show the differentiation block of their own spermatogonia, permitted differentiation of the rat spermatogonia into spermatozoa. Conversely transplantation of spermatogonial stem cells from untreated prepubertal rats into irradiated rat testes showed that the donor spermatogonia were able to colonize along the basement membrane of the seminiferous tubules but could not differentiate. Finally, suppression of testosterone in the recipient irradiated rats allowed the differentiation of the transplanted spermatogonia. These results conclusively show that the defect caused by radiation in the rat testes that results in the block of spermatogonial differentiation is due to injury to the somatic compartment. We also observed colonization of tubules by transplanted Sertoli cells from immature rats. The present results suggest that transplantation of spermatogonia, harvested from prepubertal testes to adult testes that have been exposed to cytotoxic therapy might be limited by the somatic damage and may require hormonal treatments or transplantation of somatic elements to restore the ability of the tissue to support spermatogenesis.  相似文献   

20.
Aims To investigate the therapeutic effects of tyrosine hydroxylase (TH)-transfected neuronal stem cells derived from bone marrow stem cells (NdSCs-D-BMSCs) on Parkinson’s disease (PD) through different transplantation protocols, including microinjection into the cerebral ventricles (CV) and the striatum (ST). Methods After identification by enzyme digestion, the constructed plasmid pEGFP-C2-TH was transfected into 8-day-cultured NdSCs-D-BMSCs by electroporation resulting in the coexpression of green fluorescent protein (GFP) and TH. The TH-transfected cells were injected into either the right ST or CV of PD rats. The changes in locomotor activity of PD rats and the migration of transplanted cells in cerebral tissue were monitored and cerebral DA levels were assayed by high performance liquid chromatography (HPLC). Results Five days after plasmid pEGFP-C2-TH transfection into NdSCs-D-BMSCs GFP was expressed in 62.1% of the cells and the rate of co-expression with TH was 83.5%. Ten weeks following transplantation, the symptoms of PD rats in both groups were significantly improved and DA levels were restored to 46.6% and 33% of control. The transferred cells showed excellent survival rates in PD rat brains and distant migration was observed. Conclusion Both CV and ST transplantation of TH-transfected NDSCs-D-BMSCs has obvious therapeutic effects on PD rats. This study could provide evidence for future transplantation route selection, possibly leading to stem cell transplantation through lumbar puncture. Grant: National natural science grant (30270491), Outstanding Science-technology program of Guangdong Province (2000)25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号