共查询到20条相似文献,搜索用时 15 毫秒
1.
细菌毒素-抗毒素系统的研究进展 总被引:1,自引:0,他引:1
毒素-抗毒素系统(toxin-antitoxin system,TA)由两个共表达的基因组成,其中一个基因编码不稳定的抗毒素蛋白(antitoxin),另一个基因编码稳定的毒素蛋白(toxin).毒素-抗毒素系统最早发现于一些低拷贝的质粒,用来维持低拷贝质粒在菌群中的稳定存在.随后的研究表明,毒素-抗毒素系统广泛存在于细菌,包括一些致病菌的染色体上.在营养缺乏等不良生长条件下,由于基因表达的抑制和蛋白酶的降解作用,不稳定的抗毒素蛋白减少,从而产生游离的毒素蛋白,导致细菌的生长抑制和死亡.毒素-抗毒素系统的生理功能目前还存在争议,有学者认为细茼染色体上的毒素-抗毒素系统可以在不良生长状况下介导细菌的死亡,即细茼程序性细胞死亡(baeterial programmedcell death).但也有证据显示,毒素-抗毒素系统的功能更偏向于应激状态下的生理调节方面,即只起应激状态下的抑菌作用而不是杀菌作用.对细菌生长调控中毒素-抗毒素系统的作用机理进行综述,并探讨毒素-抗毒素系统研究的理论和应用价值. 相似文献
2.
细菌毒素-抗毒素系统(Toxin-antitoxin system,TA)由稳定的毒素和不稳定的抗毒素构成,几乎存在于所有细菌中。已证明染色体编码的II型TA系统作为胁迫反应因子,通过毒素作用于不同的细胞靶点来调控重要的细胞活动过程,使细菌适应不同的环境胁迫。因此,毒素活性的调控是II型TA系统介导细菌适应性胁迫反应的关键。本文总结了II型TA系统毒素活性调控机制的研究进展,并介绍了作者近年来对模式蓝藻Synechocystis sp.PCC6803中II型TA毒素活性调控的研究结果。 相似文献
3.
毒素-抗毒素系统(toxin-antitoxin system,简称TA系统)广泛存在于原核生物(细菌和古菌)的基因组中,通常TA系统由毒素和抗毒素两部分组成,毒素发挥毒性抑制细菌生长,抗毒素可以解除抑制,它们通过体内的调控作用来对细菌或古菌的生长活动进行调节。研究发现,TA系统根据其性质及抗毒素中和毒素的方式不同可以分为8种类型Ⅰ~Ⅷ,不同类型的TA系统之间又存在着错综复杂的交互作用,而且此系统在细菌中发挥的作用也一直是近年来学者们研究的热点。现就TA系统的最新分类、TA系统的功能以及应用作一概述。 相似文献
4.
毒素-抗毒素(Toxin-Antitoxin,TA)系统广泛存在于原核生物和古细菌的染色体和质粒中。此系统由2个共表达的基因组成,分别编码稳定的毒素蛋白和易降解的抗毒素,毒素通常发挥毒性作用抑制细菌生长,而抗毒素则可中和毒性,二者相互作用对细菌生长状态起精密调节作用。根据TA的组成和抗毒素的性质,目前已经发现有6型TA,这些TA系统在细菌中发挥的作用一直是近年来学者们研究的热点,文中对细菌TA的功能研究进展进行了综述。 相似文献
5.
毒素-抗毒素(toxin-antitoxin,TA)系统是普遍存在于细菌、古细菌及原噬菌体中的遗传元件,通常由分别编码毒素和编码抗毒素的基因组成。毒素在细菌细胞中较为稳定,而抗毒素则容易被降解。大多数毒素为蛋白并具有酶的活性,通过影响蛋白质的翻译、DNA的复制等重要生命活动从而对细菌产生毒性,抑制细菌生长。抗毒素为蛋白质或非编码RNA,通过极其多样的方式,中和毒素的毒性。目前发现TA在调控质粒拷贝数、流产性感染、生物被膜的形成等过程中发挥着重要作用。随着研究的不断深入,新型TA不断被发现,极大地促进了我们对于TA的认识。目前TA已经扩展到I‒Ⅷ型,本文总结了近期发现的新型TA,并重点介绍了最新发现的Ⅶ型TA及其特殊的中和机制。由于TA与病原微生物的致病性密切相关,因此,深入研究这些TA可以为耐药微生物的治疗提供新的靶点。 相似文献
6.
毒素-抗毒素系统(toxin-antitoxin system,TA)由具有杀菌或抑菌作用的毒素和能中和毒素毒性的抗毒素组成,在细菌和古菌的染色体和可移动遗传元件中分布广泛。TA系统具有结构和功能的多样性,目前分为八大类型(Ⅰ-Ⅷ型)。研究发现TA系统与细菌生物膜的形成、细菌毒力、耐药性细菌感染、质粒拷贝数的调控及原噬菌体切离后在细胞中的稳定维持等相关。文章综述了近年来TA系统的最新分类、TA系统的功能及抗毒素的其他调控功能等进展,并对TA领域的应用做了简要描述。 相似文献
7.
《微生物学免疫学进展》2017,(3)
毒素-抗毒素(toxin-antitoxin,TA)系统是广泛存在细菌基因组上的由两个基因组成的操纵子,分别编码稳定的毒素蛋白和不稳定的抗毒素,其中毒素蛋白具有多种生物学功能。持留菌是指能够耐受高浓度抗生素或不利环境的一类细菌,它们同样具有TA系统。现就毒素-抗毒素系统介导持留菌形成机制的研究进展作一综述。 相似文献
8.
<正>高致病性2型猪链球菌(Streptococcus suis serotype 2,SS2)属于革兰氏阳性B组链球菌,是一种重要的人畜共患传染病病原菌,它不仅可以导致猪出现急性败血症、脑膜炎、关节炎、心内膜炎及急性死亡,还可以通过伤口和呼吸道等传播途径,导致人的感染。自1998及2005年我国发生两次2型猪链球菌大流行后,该菌所引起的链球菌毒素休克综合征引起国际高度重视,我国不少学者聚焦该领域的研究[1]。本刊2012年第2期刊登了王敏、胡福泉等的文章"高致病性2型猪链球菌毒-抗素毒素系统SezAT的鉴 相似文献
9.
结核分枝杆菌(Mycobacterium tuberculosis)是引起结核病的病原菌。其处于持续生存的休眠状态时,可导致长期无症状感染,称为结核潜伏感染。研究显示,结核分枝杆菌染色体中存在大量 “毒素-抗毒素系统”(toxin-antitoxin system,TAS),某些TAS在潜伏感染中发挥作用,可调节细菌生长和诱导细菌进入休眠状态;某些TAS参与生物膜形成和应激反应,但其影响生物膜形成的机制尚未阐明。生物膜中的结核分枝杆菌对多种抗结核药物耐药,且能抵抗宿主免疫系统防御;休眠状态的结核分枝杆菌对抗结核药物通常也是耐受的,给结核病治疗带来了巨大挑战。本文就近年来结核分枝杆菌TAS与生物膜的研究及抗结核药物对生物膜形成的影响进行综述。 相似文献
10.
毒素-抗毒素系统(toxin-antitoxin system,TAS)广泛存在于细菌染色体及质粒上,是细菌中含量丰富的小型遗传元件。TAS通常由两个紧密相连的基因组成,分别编码毒素(toxin)和抗毒素(antitoxin),稳定的毒素能够损伤宿主细胞,不稳定的抗毒素能够保护宿主细胞免于毒素的损伤作用。依据其性质和作用方式,目前已经发现三种型别的TAS。TAS具有多种生物学作用,如诱导程序性细胞死亡(programmed cell death,PCD),应激条件下介导持留菌形成(persistence),稳定基因大片段等。本文就近几年TAS在应激条件下的生物学作用的研究进展做一综述。 相似文献
11.
I型毒素-抗毒素(TA)系统在细菌基因组中广泛存在,在细菌的生长、生存中发挥多种生物学功能,包括抗菌、红细胞毒性、促进持留菌形成、抑制细菌生长或导致细菌休眠等。绝大部分I型毒素蛋白以细胞膜作为靶标,目前已知的一种作用机制是在细胞膜上形成孔洞结构,造成膜电位的下降或细胞膜的破坏,从而抑制ATP的合成或导致细菌死亡;另一种可能的作用机制是毒素蛋白作用在细胞膜上,改变细胞的形状,导致细胞进入休眠状态。I型毒素蛋白-细胞膜作用机制的复杂性和生物功能的多样性远超预期。因此,解析I型毒素蛋白在不同细胞膜中的组装机制及其所形成结构特征就变得非常重要,这也是揭示其结构-功能关系的关键。本文通过综述已报道的I型TA系统的结构特征与生物学功能,结合对其跨膜结构域的预测,探讨了其可能在细胞膜中形成的不同结构及其对功能的影响,分析了影响作用机制的关键因素。这些研究既给耐药细菌的治疗带来机遇,又为新型抗菌药物的研发带来思路。 相似文献
12.
13.
细菌常受到数量众多的噬菌体感染,宿主细菌在和噬菌体竞赛中进化出多样化的分子策略,流产感染(abortive infection,Abi)是其中之一。毒素-抗毒素系统(toxin-antitoxin system,TA)会在细菌受到压力胁迫时表达并介导细菌的低代谢甚至休眠,还能直接减少子代噬菌体形成。此外,部分毒素序列和结构与Cas蛋白高度同源,噬菌体甚至会编码抗毒素类似物来阻遏对应毒素的活性。这表明流产感染中细菌死亡过程导致的噬菌体感染失败与TA功能高度重合,TA可能是噬菌体侵染宿主的主要阻力和防御力量之一。文中基于TA系统的分类和功能,对参与噬菌体流产感染的TA系统进行了综述,并预测具有流产功能的TA系统和其在抗生素开发和疾病治疗中的应用前景。这有助于认识细菌-噬菌体相互作用,并指导噬菌体治疗和合成生物学。 相似文献
14.
毒素-抗毒素系统(Toxin-antitoxin system,TA)在细菌和古菌的染色体和可移动遗传元件中广泛分布,目前分为六大类型(I型-VI型)。研究发现TA能够促进多重耐药菌群的形成,同时参与细菌的程序性死亡、调控生物被膜形成、介导细菌环境适应过程等多个重要的生命过程。TA的研究主要集中在肠道细菌和病原菌中,其中II型TA研究最为深入和广泛。本文综述了近年来新型TA的鉴定、毒素新型作用靶点、抗毒素的调控功能以及TA间的相互作用等进展,并对未来的TA领域的潜在发展趋势和应用前景也进行了评述。 相似文献
15.
【目的】对我国高致病性2型猪链球菌05Z33基因组的89K毒力岛序列进行生物信息学分析,发现存在一对与化脓链球菌Epsilon-zeta(ε-ζ)同源的Ⅱ型毒素-抗毒素系统(Toxin-antitoxin system,TA)——SezAT,推测该系统具有稳定89K毒力岛使其不易丢失的作用。验证SezAT为有活性的TA系统。【方法】对SezAT进行了生物信息学分析;RT-PCR验证SezAT共转录特性;在大肠杆菌中选择性地诱导表达毒素蛋白SezT和抗毒素蛋白SezA;最后通过同源重组技术敲除SezAT系统。【结果】sezAT由同一操纵子控制,SezT可抑制细菌生长,SezA可中和SezT的毒性作用,同源重组成功获得sezT敲除突变株。【结论】证实SezAT为一对有活性的毒素-抗毒素(TA)系统,为进一步研究SezAT可能发挥稳定89K毒力岛的功能,同时获得89K毒力岛缺失突变株并深入认识89K在我国高致病性SS2中的作用奠定了基础。 相似文献
16.
毒素-抗毒素(toxin-antitoxin,TA)系统是由抗毒素及其同源毒素组成的小遗传元件,毒素可以抑制细胞生长或诱导细胞死亡,抗毒素则可以中和毒素的毒性。根据TA系统的组成和抗毒素的作用方式,TA系统可分为Ⅰ~Ⅷ型共八类,其中Ⅱ型TA系统存在最广泛,调控机制研究得最清楚。TA系统可以维持质粒等遗传元件的稳定性,同时在压力应激、促进生物膜形成、维持细菌致病力、抗噬菌体等方面都扮演着重要角色。研究TA系统的调控与生理功能能丰富人们对于生物多样性的认知,对于微生物资源的开发和利用具有重要的科学意义与应用价值。基于毒素和抗毒素的特点,TA系统被应用于生物医学领域和生物技术领域。本文综述了TA系统的分类、调控机制、生理功能和应用并简单描述了TA系统目前研究面临的问题和未来展望。 相似文献
17.
【背景】毒素-抗毒素系统在微生物体内广泛存在,在微生物对抗外界不良环境方面发挥重要作用。【目的】以模式细菌假结核耶尔森氏菌(Yersinia pseudotuberculosis,Yptb)为材料,探究其编码的Phd-Doc毒素-抗毒素系统的作用机制和生物学功能。【方法】通过生物信息学方法预测Yptb中编码的Phd-Doc毒素-抗毒素系统,通过毒性分析、基因表达分析及蛋白相互作用对其进行鉴定;通过抗生素胁迫、氧胁迫、生物被膜形成等实验研究Phd-Doc在体内发挥的生物学功能。【结果】生物信息学分析鉴定出一对Phd-Doc毒素-抗毒素系统,发现二者共转录且相互作用;毒素蛋白Doc能够引起大肠杆菌形态发生变化并抑制其生长,抗毒素蛋白Phd能中和Doc的毒性;Phd-Doc毒素-抗毒素系统具有自调控抑制效应;phd-doc的缺失对Yptb自身的生长无影响,而且毒素蛋白Doc在野生型Yptb内过表达并未显示毒性;phd-doc在转录水平上响应了抗生素胁迫和氧胁迫,其中,对氯霉素胁迫最为敏感,但并不影响Yptb的生长;同时,Phd-Doc能够影响Yptb的生物被膜形成能力。【结论】Yptb中Phd-Doc毒素-抗毒素系统的功能鉴定对于更好地了解在多变的外部环境下微生物的定殖和响应机制具有重要意义。 相似文献
18.
滞留菌是一类处于低代谢休眠状态的抗生素耐受细菌亚群,能够在致死性压力应激后存活下来,是抗生素治疗失败和复发性感染的主要原因之一。毒素-抗毒素系统(toxin-antitoxin system, TA)作为压力应激模块普遍存在于各种细菌中,由稳定的毒素和不稳定但可以中和毒素的同源抗毒素组成。压力情况下,第二信使(p)ppGpp激活Lon,随后大多数II型TA系统被激活,诱导滞留菌形成。同样在(p)ppGpp存在的情况下,Obg刺激hokB转录,使毒素积累,抑制细菌DNA复制、转录、翻译等重要的生理过程,驱动细菌形成滞留菌。SOS反应是激活TA系统的另一个主要途径,解除了对tisB转录的抑制,使其在细胞内积累并插入细胞膜,破坏质子动力势,降低胞内ATP水平,诱使休眠和滞留菌形成。讨论TA系统介导滞留菌形成的机制有助于提出新型抗菌策略。 相似文献
19.
【目的】鉴定结核分枝杆菌基因组上MazF同源蛋白基因与其上游基因是否组成毒素-抗毒素系统,阐明毒素蛋白的作用机理,并初步探讨毒素-抗毒素系统在营养缺乏时的表达调控。【方法】在大肠杆菌和耻垢分枝杆菌中将MazF同源蛋白单独表达或与其对应的抗毒素蛋白共同表达,鉴定MazF同源蛋白对细菌生长的抑制作用以及其对应的抗毒素蛋白能否消除这种生长抑制;通过体外RNA切割实验,检测MazF同源蛋白是否具有RNA切割活性;检测正常生长条件下和饥饿条件下毒素-抗毒素系统的启动子活性,探讨其在应激条件下的表达调控。【结果】结核分枝杆菌MazF同源蛋白中,Rv0659c、Rv1495和Rv1942c不具有抑制细菌生长的毒素蛋白活性,Rv1991c、Rv2801c、Rv1102c和mtPemK能够抑制细菌生长,而且它们的抑制作用可以分别被其对应的抗毒素Rv1991a、Rv2801a、Rv1103c和mtPemI解除。Rv1991c、Rv2801c和Rv1102c具有RNA切割活性,mtPemK则不能切割RNA。Rv1991a-1991c和Rv2801a-2801c系统的启动子在饥饿条件下活性显著升高。【结论】结核分枝杆菌基因组上Rv1991a-1991c、Rv2801a-2801c、Rv1103c-1102c和mtPemI-mtPemK是毒素-抗毒素系统。毒素蛋白Rv1991c、Rv2801c和Rv1102c通过切割RNA发挥抑菌或杀菌活性,mtPemK具体作用机理目前还不清楚。Rv1991a-1991c和Rv2801a-2801c系统可能参与结核分枝杆菌在营养匮乏条件下的生长调控。 相似文献
20.
为构建结核分枝杆菌毒素‐抗毒素系统 m azEF6缺失突变株,并对其表型进行初步探讨,首先用聚合酶链反应(PCR)分别从H37Rv标准株和PUC‐19K质粒扩增出 mazEF6基因的同源臂及卡那霉素抗性基因kan ;然后应用融合PCR技术将 mazEF6基因的同源臂与 kan基因进行杂交拼接,获得目的融合片段,将该融合片段克隆于pMD‐19T(simple)载体形成自杀质粒pMD‐19T‐ΔmazEF6‐kan ,并将自杀质粒转化至大肠埃希菌DH5α中;最后利用电穿孔技术将自杀质粒电转至H37Rv标准株中,在卡那霉素抗性改良罗氏培养基上筛选H37Rv ΔmazEF6缺失突变株单个菌落,提取阳性菌株全基因组DNA为模板,PCR扩增克隆片段并测序。将所获得的H37Rv ΔmazEF6缺失突变株进行遗传稳定性检测后,对其表型进行初步研究。结果显示,该缺失株在15代内未发生回复性突变;与野生株相比,缺失株生长速度缓慢且细菌形态短小。本研究证实,融合PCR技术便于快速获得结核分枝杆菌缺失突变株;结核分枝杆菌在缺失毒素‐抗毒素系统 m azEF6基因后生存能力下降,这为进一步研究毒素‐抗毒素系统的作用奠定了基础。 相似文献