首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylketonuria (PKU) is a metabolic disorder that results from a deficiency of hepatic phenylalanine hydroxylase (PAH). Identification of the PKU genotype is useful for predicting clinical PKU phenotype. More than 400 mutations resulting in PAH deficiency have been reported worldwide. We used a genedetecting instrument to identify the nine prevalent Japanese mutations in the PAH gene among 31 PKU patients as a preliminary study. This instrument can automatically detect mutations through the use of allele-specific oligonucleotide (ASO) capture probes, and gave results comparable to those of sequencing studies. Each country has uniquely prevalent and specific mutations causing PKU, and less than 50 types of such mutations are generally present in each country. Early genotyping of PKU makes it possible to identify the phenotype and select the optimal therapy for the disease. For early genotyping, the instrumental method described here shortens the time required for genotyping based on mRNA and/or genomic DNA of PKU parents.  相似文献   

2.
In order to determine the phenylketonuria (PKU) mutation spectrum in the population of Minas Gerais State, Brazil, 78 unrelated PKU patients found by the neonatal screening program from 1993 to 2003 were tested for nine phenylalanine hydroxylase mutations. These mutations were selected due to their high frequencies in other Brazilian populations and in Portugal, where the largest contingent of the Caucasian component of the Brazilian population originated from. The most frequent mutations were V388M (21%), R261Q (16%), IVS10nt11 (13.4%), I65T (5.7%), and R252W (5%). The frequencies of the other four mutations (R261X, R408W, Y414C, and IVS12nt1) did not reach 2%. By testing these nine mutations, we were able to identify 64% of the PKU alleles in our sample. V388M frequency was higher than in any other known population and almost three times larger than that observed in Portugal, probably reflecting genetic drift. The mutation profile, as well as the relative frequency of the different mutations, suggest that the Minas Gerais population more closely resembles that of Portugal than do the other Brazilian populations that have already been tested.  相似文献   

3.
Novel PKU mutation on haplotype 2 in French-Canadians.   总被引:17,自引:11,他引:6       下载免费PDF全文
We analyzed DNA from nine French-Canadian probands from eastern Quebec province; all had hyperphenylalaninemia (phenylketonuria [PKU] or non-PKU forms) caused by mutations at the phenylalanine hydroxylase locus. Analysis of RFLP haplotypes and mutations revealed a novel mutation, an A-to-G transition (met----val) in codon 1 (the translation-initiation codon). It occurred on 5 of the 18 mutant chromosomes and was associated each time with haplotype 2. A proband homozygous for this mutation had the PKU phenotype. In other probands, the codon 1 mutation was inherited once with the splice junction mutation in exon 12 (on haplotype 3), conferring PKU, and was inherited twice with a mutation on haplotype 1, conferring PKU in one proband and non-PKU hyperphenylalaninemia in the other. The other five probands carried mutations, conferring PKU, on the following haplotype combinations: 1/3 (twice), 1/9, 3/4, and 1/1. The mutations on haplotypes 1, 4, and 9 are not yet characterized. This preliminary study reveals a novel PKU mutation and considerable genetic heterogeneity at the phenylalanine hydroxylase locus in French-Canadians.  相似文献   

4.
Summary Details are given concerning the phenylketonuria (PKU) mutations R408Q and F299C. Both mutations were identified among 47 PKU patients, derived from the Norwegian PKU registry. A novel PKU mutation (R408Q) was identified, by single-strand conformation polymorphism analysis, on six out of eight mutant haplotype 12 chromosomes and on none of the other PKU chromosomes. The F299C mutation occurred exclusively on mutant haplotype 8, and was the only mutation associated with this haplotype (on six chromosomes). One patient homozygous for each mutation was found. The patient homozygous for F299C manifested severe PKU, whereas the R408Q homozygote exhibited a mild PKU variant. Pedigree analysis of these families has not, so far, revealed consanguinity. Information on the place of birth of the relevant grandparents of the PKU patients with these mutations suggests that each of these mutations in Norway has originated from a common gene source.  相似文献   

5.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

6.
Tetrahydrobiopterin (BH4) is a co-factor that enhances the activity of other enzymes, and this co-factor level is found to be affected in phenylketonuria (PKU), an amino acid metabolism disorder. The present study was aimed at understanding the effect of BH4 on mutations in the regulatory domain of phenylalanine hydroxylase (PAH). Among 14 patients, 5 patients were classical PKU, 3 were atypical PKU, and 6 were mild PKU. All of these patients had at least one mutation in the regulatory domain. Patients were given 10 mg/kg BH4, and the response of blood phenylalanine (Phe) levels was monitored following treatment. The level of blood Phe decreased after BH4 treatment in all of the patients. These studies suggest that mutations in the regulatory domain also responded to BH4 even if the patient had classical PKU.  相似文献   

7.
Summary We have screened seven Spanish phenylketonuric (PKU) families for the most prevalent Mediterranean and Caucasian mutations, and have subsequently found mutations P281L and IVS10. We have analyzed these two mutations in 23 of our patients. The frequencies found correspond to those of Mediterranean countries, such as Italy. This is the first report of a mutation analysis in the Spanish PKU population.  相似文献   

8.
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.  相似文献   

9.
Molecular analysis of 289 chromosomes has been performed in a cohort of phenylketonuria (PKU) patients whose ancestors lived in five Italian regions, Calabria, Campania, Piemonte, Puglia/Basilicata and Sicilia. Phenylalaninehydroxylase (PAH) gene mutations and minihaplotypes (combinations of PAH gene STR and VNTR systems) have been determined for 78.5 and 64%, respectively, of the chromosomes studied. 21 different minihaplotypes and 24 PKU mutations were found. Heterogeneity tests carried out for the frequencies of mutations and minihaplotypes show that the distribution of eight mutations and four minihaplotypes is statistically heterogeneous in the five Italian regions. Although the evolutionary rate of microsatellites or the age of these mutations is difficult to estimate with accuracy, our findings taken together show a genetic stratification of the Italian population. These results rule out allelic homogeneity of PKU at the molecular level between regions of Italy, yet minihaplotype data may be of practical use for a multistep approach to PAH gene genotyping.  相似文献   

10.
11.
Phenylketonuria (PKU) is a widespread autosome recessive hereditary disease caused by a deficiency of the liver enzyme phenylalanine hydroxylase, which results in distortion of metabolism of phenylalanine and accumulation of toxic metabolites. The knowledge of molecular bases of PKU is of a high social importance as it enables phenotypic correction of the disease in the case of its early diagnostics. This disease is known to be associated with mutations in the phenylalanine hydroxylase gene, the distribution and mutation spectrum having pronounced ethnic and regional features. We studied the spectrum of mutations in the phenylalanine hydroxylase gene in a group of patients with PKU from the Novosibirsk region to reveal 10 missense point mutations, 1 mutation in the splice donor site, and 1 microdeletion. For these mutations, most widely distributed in the region, we used straightforward detection methods basing on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR, and denaturing gradient gel electrophoresis (DGGE).  相似文献   

12.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

13.
Phenylketonuria (PKU) is a widespread autosome recessive hereditary disease caused by a deficiency of the liver enzyme phenylalanine hydroxylase, which results in the distortion of phenylalanine metabolism and accumulation of toxic metabolites. The knowledge of molecular bases of PKU is of a high social importance as it enables phenotypic correction of the disease in the case of its early diagnostics. This disease is known to be associated with mutations in the phenylalanine hydroxylase gene, the distribution and mutation spectrum having pronounced ethnic and regional features. We studied the spectrum of mutations in the phenylalanine hydroxylase gene in a group of patients with PKU from the Novosibirsk region to reveal 10 missense point mutations, 1 mutation in the splice donor site, and 1 microdeletion. For these mutations, most widely distributed in the region, we used straightforward detection methods based on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR, and denaturing gradient gel electrophoresis (DGGE).  相似文献   

14.
We report the identification by denaturing gradient gel electrophoresis and sequence analysis of two new phenylalanine hydroxylase (PAH) gene mutations (IVS4nt-2 and N207S) in single chromosomes of two unrelated Italian phenylketonuric (PKU) patients. Interestingly, mutation Y204C, found on the second mutant allele of family F1, has been previously detected in Chinese patients. Haplotype analysis showed that the latter mutation is linked to the same haplotype (H4) in both Chinese and Italian patients, suggesting a common origin. In vivo assessment of mutation severity indicates that N207S is associated with classic PKU. The identification of these two new mutations further extends the remarkable heterogeneity of the PAH locus in the Italian population. Received: 23 May 1996  相似文献   

15.
We present a multistep approach for the rapid analysis of phenylketonuria (PKU) mutations. In the first step, three common mutations and a polymorphic short tandem repeat (STR) system are rapidly analyzed with a fluorescent multiplex assay. In the second step, minihaplotypes combining STR and VNTR data are used to determine rare mutations likely to be present in an investigated patient, which are then confirmed by restriction enzyme analysis. The remaining mutations are analyzed with denaturant gradient-gel electrophoresis and sequencing. The first two steps together identify both mutations in 90%-95% of PKU patients, and results can be obtained within 2 d. We have investigated 121 Northern Irish families with hyperphenylalaninemia, including virtually all patients born since 1972, and have found 34 different mutations on 241 of the 242 mutant alleles. Three mutations (R408W, I65T, and F39L) account for 57.5% of mutations, while 14 mutations occur with a frequency of 1%-6%. The present analysis system is efficient and inexpensive and is particularly well suited to routine mutation analysis in a diagnostic setting.  相似文献   

16.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

17.
Phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are allelic disorders caused by mutations in the gene encoding phenylalanine hydroxylase (PAH). In this study, a total of 218 independent PAH chromosomes (109 unrelated patients with PKU residing in Lithuania) were investigated. All 13 exons of the PAH gene of all PKU probands were scanned for DNA alterations by denaturing gradient gel electrophoresis (DGGE). In the cases of a specific DGGE pattern recognized, mutations were identified by direct fluorescent automated sequencing or by restriction enzyme digestion analysis of relevant exons. Twenty-five different PAH gene mutations were identified in Lithuania. We estimated a connection between individual PAH locus mutations and biochemical and metabolic phenotypes in patients in whom the mutant allele acts on its own, i.e., in functionally hemizygous patients and using the assigned value (AV) method to determine the severity of both common and rare mutant alleles, as well as to check a model to predict the combined phenotypic effect of two mutant PAH alleles. The text was submitted authors English.  相似文献   

18.
Phenylketonuria (PKU) is a genetic disease caused by mutations in human phenylalanine hydroxylase (PAH). Most missense mutations result in misfolding of PAH, increased protein turnover, and a loss of enzymatic function. We studied the prediction of the energetic impact on PAH native-state stability of 318 PKU-associated missense mutations, using the protein-design algorithm FoldX. For the 80 mutations for which expression analyses have been performed in eukaryote systems, in most cases we found substantial overall correlations between the mutational energetic impact and both in vitro residual activities and patient metabolic phenotype. This finding confirmed that the decrease in protein stability is the main molecular pathogenic mechanism in PKU and the determinant for phenotypic outcome. Metabolic phenotypes have been shown to be better predicted than in vitro residual activities, probably because of greater stringency in the phenotyping process. Finally, all the remaining 238 PKU missense mutations compiled at the PAH locus knowledgebase (PAHdb) were analyzed, and their phenotypic outcomes were predicted on the basis of the energetic impact provided by FoldX. Residues in exons 7-9 and in interdomain regions within the subunit appear to play an important structural role and constitute hotspots for destabilization. FoldX analysis will be useful for predicting the phenotype associated with rare or new mutations detected in patients with PKU. However, additional factors must be considered that may contribute to the patient phenotype, such as possible effects on catalysis and interindividual differences in physiological and metabolic processes.  相似文献   

19.
In order to investigate the molecular basis of phenylketonuria (PKU) in Spain, we analyzed the restriction fragment length polymorphism (RFLP) haplotypes and common mutations in the phenylalanine hydroxylase (PAH) gene in 32 unrelated Spanish PKU families. The distribution of RFLP haplotypes differs from that of northern Europe. Mutant haplotypes 2 and 3 were completely absent in our sample. Approximately 65% of the mutant alleles are confined to three RFLP haplotypes, namely haplotypes 1, 6 and 9, also frequently found in other Mediterranean populations. We screened for previously described PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides, and found IVS10,165T, E280K and P281L as the major mutations, representing 41% of the PKU alleles. Other mutations found were Y414C, and a new one, P244L. Mutations R408W and IVS12, prevalent in northern Europe, as well as others present in southern European populations (R252W, R261Q, L249F) were not detected in our sample. Our results reveal the genetic heterogeneity present in the Spanish PKU population, which shows similarities to others of Mediterranean origin.  相似文献   

20.
According to the neonatal screening conducted during the last nine years in Karachay-Cherkessia, the frequency of hyperphenylalaninemia (including PKU) was 1: 850 newborns, which significantly exceeded the average frequency of 1: 7000 in Russia. Analysis of DNA obtained from 25 patients with a diagnosis of “hyperphenylalaninemia” (HPA) from the Karachay-Cherkess Republic was performed to search for mutations in the PAH gene. Mutations were identified on 90% of the studied chromosomes, while at least one mutation in the PAH gene was observed in all patients. The allele frequency of a major mutation R261X was 32.5%. A correlation between genotype and phenotype was confirmed in patients with HPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号