共查询到20条相似文献,搜索用时 15 毫秒
1.
K Ike M Nakazawa M Tsuchimoto S Ide M Kashiwazaki 《Microbiology and immunology》1987,31(12):1255-1258
The hemagglutination (HA) by pilus antigen 987P of an enterotoxigenic Escherichia coli strain 987 was examined using fresh and glutaraldehyde (GA)-fixed erythrocytes (RBC) of various animals. Only when GA-fixed RBC was employed, a strain 987 exhibited striking HA activities. This was also demonstrated by using latex heads sensitized with the 987P antigen. The 987P-specific antiserum inhibited HA of strain 987 and 987P sensitized latex beads against GA-fixed RBC. We concluded that HA of strain 987 against GA-fixed RBC was specifically associated with the presence of 987P pilus antigen but do not exclude a possibility that adhesin is distinct from pili antigen. 相似文献
2.
P pili are important adhesive fibres that are assembled by the conserved chaperone-usher pathway. During pilus assembly, the subunits are incorporated into the growing fibre by the donor-strand exchange mechanism, whereby the beta-strand of the chaperone, which complements the incomplete immunoglobulin fold of each subunit, is displaced by the amino-terminal extension of an incoming subunit in a zip-in-zip-out exchange process that is initiated at the P5 pocket, an exposed hydrophobic pocket in the groove of the subunit. In vivo, termination of P pilus growth requires a specialized subunit, PapH. Here, we show that PapH is incorporated at the base of the growing pilus, where it is unable to undergo donor-strand exchange. This inability is not due to a stronger PapD-PapH interaction, but to a lack of a P5 initiator pocket in the PapH structure, suggesting that PapH terminates pilus growth because it is lacking the initiation point by which donor-strand exchange proceeds. 相似文献
3.
Valenski ML Harris SL Spears PA Horton JR Orndorff PE 《Journal of bacteriology》2003,185(16):5007-5011
Site-directed mutagenesis was employed to create lesions in fimI, a gene of uncertain function located in the chromosomal gene cluster (fim) involved in Escherichia coli type 1 pilus biosynthesis. Chromosomal fimI mutations produced a piliation-negative phenotype. Complementation analysis indicated that a fimI'-kan insertion mutation and a fimI frameshift mutation produced polarity-like effects not seen with an in-frame fimI deletion mutation. Minicell analysis associated fimI with a 16.4-kDa noncytoplasmic protein product (FimI). We conclude that FimI has a required role in normal pilus biosynthesis. 相似文献
4.
The Escherichia coli somatic pilus, 987P, has been purified after removal by homogenization from a 987P+ enterotoxigenic E. coli. Cell-free pili were precipitated by the addition of MgCl2, collected, and dissolved in MgCl2-free buffer. Five cycles of precipitation and dissolving resulted in a preparation of 987P that was judged to be homogeneous based on electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the electron microscope, 987P was rod shaped, having a diameter of 7 nm and an apparent axial hole. Cells and membrane vesicles were not observed in the purified pilus preparation. Electrophoresis of 987P through sodium dodecyl sulfate-polyacrylamide gels resulted in a single band when the sample was denatured in the absence of mercaptoethanol and in two bands when the sample was denatured in the presence of mercaptoethanol. The calculated molecular weight of 987 was variable, depending upon the polyacrylamide concentration and whether mercaptoethanol was included in the denaturing solution. Chemically, 987P is composed primarily of protein but also contains an unidentified amino sugar. The amino terminal amino acid of 987P is alanine and its isoelectric point is pH 3.7. 987P possesses no detectable hemagglutinating activity. 相似文献
5.
The type IV pilus assembly complex: biogenic interactions among the bundle-forming pilus proteins of enteropathogenic Escherichia coli 总被引:4,自引:0,他引:4
下载免费PDF全文

Ramer SW Schoolnik GK Wu CY Hwang J Schmidt SA Bieber D 《Journal of bacteriology》2002,184(13):3457-3465
Production of type IV bundle-forming pili (BFP) by enteropathogenic Escherichia coli (EPEC) requires the protein products of 12 genes of the 14-gene bfp operon. Antisera against each of these proteins were used to demonstrate that in-frame deletion of individual genes within the operon reduces the abundance of other bfp operon-encoded proteins. This result was demonstrated not to be due to downstream polar effects of the mutations but rather was taken as evidence for protein-protein interactions and their role in the stabilization of the BFP assembly complex. These data, combined with the results of cell compartment localization studies, suggest that pilus formation requires the presence of a topographically discrete assembly complex that is composed of BFP proteins in stoichiometric amounts. The assembly complex appears to consist of an inner membrane component containing three processed, pilin-like proteins, BfpI, -J, and -K, that localize with BfpE, -L, and -A (the major pilin subunit); an outer membrane, secretin-like component, BfpB and -G; and a periplasmic component composed of BfpU. Of these, only BfpL consistently localizes with both the inner and outer membranes and thus, together with BfpU, may articulate between the Bfp proteins in the inner membrane and outer membrane compartments. 相似文献
6.
7.
Structural and topographical studies of the type IV bundle-forming pilus assembly complex of enteropathogenic Escherichia coli
下载免费PDF全文

The type IV bundle-forming pili (BFP) of enteropathogenic Escherichia coli (EPEC) are required for virulence in orally challenged human volunteers and for the localized adherence and autoaggregation in vitro phenotypes. BFP filament biogenesis and function are encoded by the 14-gene bfp operon. The BFP assembly complex, containing a BfpB-His6 fusion protein, was chemically cross-linked in situ, and the complex was then purified from BFP-expressing EPEC by a combination of nickel- and BfpB antibody-based affinity chromatography. Characterization of the isolated complex by immunoblotting using BFP protein-specific antibodies showed that at least 10 of the 14 proteins specified by the bfp operon physically interact to form an oligomeric complex. Proteins localized to the outer membrane, inner membrane, and periplasm are within this complex, thus demonstrating that the complex spans the periplasmic space. A combination of immunofluorescence and immuno-gold thin-section transmission electron microscopy studies localized this complex to one pole of the cell. 相似文献
8.
Structure and antigenic properties of the tip-located P pilus proteins of uropathogenic Escherichia coli. 总被引:24,自引:5,他引:24
下载免费PDF全文

Pyelonephritogenic Escherichia coli frequently expresses pili which bind to Gal alpha (1-4)Gal receptors present on the uroepithelium. Binding of these pili is mediated by a pilus-associated adhesin, PapG, and not by the major subunit which constitutes the bulk of the pilus structure. The adhesin and two pilinlike proteins, PapE and PapF, are present in only a few copies each at the pilus tip. Surface exposure of both PapF and PapG is required to achieve receptor-specific binding. The nucleotide sequences for the genes encoding the tip-associated proteins PapE, PapF, and PapG were determined for two E. coli clones expressing P pili of serotypes F11 and F7(2) and compared with the corresponding sequences established for proteins of F13 pili. Specific antisera were used to study the cross-reactivity between the F13 tip proteins and the equivalent proteins in F11 and F7(2) pili. We present data showing that, like the major pilus subunit, PapE varies its structure and antigenic properties among pili of different serotypes. In contrast, the PapF protein was highly conserved, and PapF-specific antisera raised against serotype F13 cross-reacted with the PapF proteins of both F11 and F7(2) serotypes. The PapG adhesin protein from F11 and F7(2) pili differed by only five amino acids out of 316 residues. However, the F13 adhesin showed only 45% amino acid homology with the other two variants. 相似文献
9.
10.
11.
12.
The assembly of the wild-type and several mutant forms of the trimeric outer membrane porin PhoE of Escherichia coli was investigated in vitro and in vivo. In in vivo pulse-chase experiments, approximately half of the wild-type PhoE molecules assembled within the 30-s pulse in the native conformation in the cell envelope. The other half of the molecules followed slower kinetics, and three intermediates in this multistep assembly process were detected: a soluble trypsin-sensitive monomer, a trypsin-sensitive monomeric form that was loosely associated with the cell envelope and a metastable trimer, which was integrated into the membranes and converted to the stable trimeric configuration within minutes. The metastable trimers disassembled during sample preparation for standard SDS/PAGE into folded monomers. In vitro, the isolated PhoE protein could efficiently be folded in the presence of N,N-dimethyldodecylamine-N-oxide (LDAO). A mutant PhoE protein, DeltaF330, which lacks the C-terminal phenylalanine residue, mainly followed the slower kinetic pathway observed in vivo, resulting in increased amounts of the various assembly intermediates. It appears that the DeltaF330 mutant protein is intrinsically able to fold, because it was able to fold in vitro with LDAO with similar efficiencies as the wild-type protein. Therefore, we propose that the conserved C-terminal Phe is (part of) a sorting signal, directing the protein efficiently to the outer membrane. Furthermore, we analysed a mutant protein with a hydrophilic residue introduced at the hydrophobic side of one of the membrane-spanning amphipathic beta strands. The assembly of this mutant protein was not affected in vivo or in vitro in the presence of LDAO. However, it was not able to form folded monomers in a previously established in vitro folding system, which requires the presence of lipopolysaccharides and Triton. Hence, a folded monomer might not be a true assembly intermediate of PhoE in vivo. 相似文献
13.
Okura M Osaki M Fittipaldi N Gottschalk M Sekizaki T Takamatsu D 《Journal of bacteriology》2011,193(4):822-831
Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis. It consists of one sortase gene (srtG) and two putative pilin subunit genes (sgp1 and sgp2). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism. 相似文献
14.
Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway 总被引:1,自引:0,他引:1
下载免费PDF全文

Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive complex with DsbA under respiration-defective conditions. While DsbB, under normal aerobic conditions, is in the oxidized state, having two intramolecular disulfide bonds, oxidation of Cys104 and Cys130 requires the presence of Cys41-Cys44. Remarkably, the Cys41-Cys44 disulfide bond is refractory to reduction by a high concentration of dithiothreitol, unless the membrane is solubilized with a detergent. This reductant resistance requires both the respiratory function and oxygen, since Cys41-Cys44 became sensitive to the reducing agent when membrane was prepared from quinone- or heme-depleted cells or when a membrane sample was deaerated. Thus, the Cys41-Val-Leu-Cys44 motif of DsbB is kept both strongly oxidized and strongly oxidizing when DsbB is integrated into the membrane with the normal set of respiratory components. 相似文献
15.
Fimbrial ushers are the largest β-barrel outer membrane proteins (OMPs) known to date, which function in the polymerization of fimbriae and their translocation to the bacterial surface. Folding and assembly of these complex OMPs are not characterized. Here, we investigate the role of periplasmic chaperones (SurA, Skp, DegP, and FkpA) and individual components of the β-barrel assembly machinery (BAM) complex (BamA, BamB, BamC, and BamE) in the folding of the Escherichia coli FimD usher. The FimD level is dramatically reduced (~30-fold) in a surA null mutant, but a strong cell envelope stress is constitutively activated with upregulation of DegP (~10-fold). To demonstrate a direct role of SurA, FimD folding was analyzed in a conditional surA mutant in which SurA expression was controlled. In this strain, FimD is depleted from bacteria in parallel to SurA without significant upregulation of DegP. Interestingly, the dependency on SurA is higher for FimD than for other OMPs. We also demonstrate that a functional BAM complex is needed for folding of FimD. In addition, FimD levels were strongly reduced (~5-fold) in a mutant lacking the accessory lipoprotein BamB. The critical role of BamB for FimD folding was confirmed by complementation and BamB depletion experiments. Similar to SurA dependency, FimD showed a stronger dependency on BamB than OMPs. On the other hand, folding of FimD was only marginally affected in bamC and bamE mutants. Collectively, our results indicate that FimD usher follows the SurA-BamB pathway for its assembly. The preferential use of this pathway for the folding of OMPs with large β-barrels is discussed. 相似文献
16.
A genetic approach for analyzing the pathway of LamB assembly into the outer membrane of Escherichia coli 总被引:15,自引:0,他引:15
R Misra A Peterson T Ferenci T J Silhavy 《The Journal of biological chemistry》1991,266(21):13592-13597
Results presented in this study demonstrate that a mutation which inserts an additional tyrosine between the 2 tyrosines at residues 118 and 119 of mature LamB protein results in a temperature-dependent assembly defect. This defect leads to the accumulation of an intermediate at the restrictive temperature that is most likely an assembly-defective monomer. These monomers are rapidly degraded in the wild type (htrA+) strain, and the biphasic kinetics of this degradation indicate that the mutation affects the assembly process and not the final product, i.e. stable trimers. In addition, our data show that the temperature-dependent assembly defect in the mutant strain is reversible, and therefore the accumulated monomers represent a true assembly intermediate. Fractionation studies show that the monomers, which can be accumulated in htrA (degP) mutants at the restrictive temperature, are associated with the outer membrane, indicating that trimerization of LamB is not a prerequisite for localization. 相似文献
17.
Identification of polypeptides necessary for chemotaxis in Escherichia coli. 总被引:13,自引:13,他引:13
下载免费PDF全文

Molecular cloning techniques were used to construct Escherichia coli-lambda hybrids that contained many of the genes necessary for flagellar rotation and chemotaxis. The properties of specific hybrids that carried the classical "cheA" and "cheB" loci were examined by genetic complementation and by measuring the capacity of the hybrids to direct the synthesis of specific polypeptides. The results of these tests with lambda hybrids and with a series of deletion mutations derived from the hybrids redefined the "cheA" and "cheB" regions. Six genes were resolved: cheA, cheW, cheX, cheB, cheY, and cheZ. They directed the synthesis of specific polypeptides with the following apparent molecular weights: cheA, 76,000 and 66,000; cheW, 12,000; cheX, 28,000; cheB, 38,000; cheY, 8,000; and cheZ, 24,000. The presence of another gene, cheM, was inferred from the protein synthesis experiments. The cheM gene directed the synthesis of polypeptides with apparent molecular weights of 63,000, 61,000, and 60,000. The synthesis of all of these polypeptides is regulated by the same mechanisms that regulate the synthesis of flagellar-related structural components. 相似文献
18.
Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli 总被引:7,自引:2,他引:7
Enterotoxigenic Escherichia coli (ETEC) causes an acute cholera-like diarrhoea in both humans and animals. We describe a new pilus termed longus produced by ETEC, which can extend for over 20 microns from the cell surface. Longus is composed of a repeating subunit of 22 kDa and its NH2-terminal amino acid sequence revealed homology with the toxin-coregulated pilus of Vibrio cholerae, the bundle-forming pilus of enteropathogenic E. coli and type IV pilins of some Gram-negative bacterial pathogens. The longus structural gene (IgA) is encoded in a large plasmid and was cloned in a 5 kb fragment, which proved to be sufficient for pilus production and assembly in E. coli K-12. The presence of IngA was restricted to human ETEC strains. In contrast to other ETEC pili, IngA was widely distributed among ETEC strains independent of their geographical origin, serotype, toxin production, or other pili antigens expressed. Longus is a new member of the type IV pili family, which may represent a highly conserved intestinal colonization factor of ETEC. Common antigenic determinants exist among longus and their pilin subunits, produced by heterologous ETEC. Longus could be significant in the immuno-prophylaxis of diarrhoeal disease caused by ETEC, especially against those strains in which no colonization factors have been identified and that produce heat-stable toxin only. 相似文献
19.
20.
Pseudomonas aeruginosa D-arabinofuranose biosynthetic pathway and its role in type IV pilus assembly
Harvey H Kus JV Tessier L Kelly J Burrows LL 《The Journal of biological chemistry》2011,286(32):28128-28137
Pseudomonas aeruginosa strains PA7 and Pa5196 glycosylate their type IVa pilins with α1,5-linked D-arabinofuranose (d-Araf), a rare sugar configuration identical to that found in cell wall polymers of the Corynebacterineae. Despite this chemical identity, the pathway for biosynthesis of α1,5-D-Araf in Gram-negative bacteria is unknown. Bioinformatics analyses pointed to a cluster of seven P. aeruginosa genes, including homologues of the Mycobacterium tuberculosis genes Rv3806c, Rv3790, and Rv3791, required for synthesis of a polyprenyl-linked d-ribose precursor and its epimerization to D-Araf. Pa5196 mutants lacking the orthologues of those genes had non-arabinosylated pilins, poor twitching motility, and significantly fewer surface pili than the wild type even in a retraction-deficient (pilT) background. The Pa5196 pilus system assembled heterologous non-glycosylated pilins efficiently, demonstrating that it does not require post-translationally modified subunits. Together the data suggest that pilins of group IV strains need to be glycosylated for productive subunit-subunit interactions. A recombinant P. aeruginosa PAO1 strain co-expressing the genes for d-Araf biosynthesis, the pilin modification enzyme TfpW, and the acceptor PilA(IV) produced arabinosylated pili, confirming that the Pa5196 genes identified are both necessary and sufficient. A P. aeruginosa epimerase knock-out could be complemented with the corresponding Mycobacterium smegmatis gene, demonstrating conservation between the systems of the Corynebacterineae and Pseudomonas. This work describes a novel Gram-negative pathway for biosynthesis of d-Araf, a key therapeutic target in Corynebacterineae. 相似文献