首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oats grain from South Africa was frequently found to be infested by toxic strains of Fusarium acuminatum, as was one barley sample. All 11 toxic strains tested produced T-2 toxin (0.8 to 2,600 mg/kg), and 6 of 11 strains produced diacetoxyscirpenol (0.6 to 8.4 mg/kg). This is the first record of T-2 toxin-producing Fusarium isolates from Africa and of the production of large amounts of T-2 toxin at relatively high (25 degrees C) temperatures.  相似文献   

2.
The range and comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides, i.e., NRRL 3299, NRRL 3510, M-1-1, HPB 071178-13, and F-38, were determined. Lyophilized cultures of the five strains maintained in the International Toxic Fusarium Reference Collection were used to inoculate autoclaved corn kernels. Corn cultures were incubated at 15 degrees C for 21 days and analyzed for trichothecenes by thin-layer chromatography and capillary gas chromatography. All five strains produced T-2 toxin, HT-2 toxin, T-2 triol, and neosolaniol. Two strains also produced T-2 tetraol, and two others produced diacetoxyscirpenol. The highest producer of T-2 toxin (1,300 mg/kg), HT-2 toxin (200 mg/kg), T-2 triol (1.9 mg/kg), and neosolaniol (170 mg/kg) was NRRL 3510, which was originally isolated from millet associated with outbreaks of alimentary toxic aleukia in the USSR. The second highest producer of T-2 toxin (930 mg/kg) was NRRL 3299. The other three strains produced T-2 toxin at levels ranging from 130 to 660 mg/kg. Thus, the five strains differed considerably in the amounts of T-2 toxin and other trichothecenes produced under identical laboratory conditions. These strains are being maintained under optimal conditions for the preservation of Fusarium cultures and are available from the Fusarium Research Center, The Pennsylvania State University, University Park.  相似文献   

3.
The range and comparative yields of T-2 toxin and related trichothecenes from five toxicologically important strains of Fusarium sporotrichioides, i.e., NRRL 3299, NRRL 3510, M-1-1, HPB 071178-13, and F-38, were determined. Lyophilized cultures of the five strains maintained in the International Toxic Fusarium Reference Collection were used to inoculate autoclaved corn kernels. Corn cultures were incubated at 15 degrees C for 21 days and analyzed for trichothecenes by thin-layer chromatography and capillary gas chromatography. All five strains produced T-2 toxin, HT-2 toxin, T-2 triol, and neosolaniol. Two strains also produced T-2 tetraol, and two others produced diacetoxyscirpenol. The highest producer of T-2 toxin (1,300 mg/kg), HT-2 toxin (200 mg/kg), T-2 triol (1.9 mg/kg), and neosolaniol (170 mg/kg) was NRRL 3510, which was originally isolated from millet associated with outbreaks of alimentary toxic aleukia in the USSR. The second highest producer of T-2 toxin (930 mg/kg) was NRRL 3299. The other three strains produced T-2 toxin at levels ranging from 130 to 660 mg/kg. Thus, the five strains differed considerably in the amounts of T-2 toxin and other trichothecenes produced under identical laboratory conditions. These strains are being maintained under optimal conditions for the preservation of Fusarium cultures and are available from the Fusarium Research Center, The Pennsylvania State University, University Park.  相似文献   

4.
T-2 Toxin as an Emetic Factor in Moldy Corn   总被引:11,自引:8,他引:3       下载免费PDF全文
Extracts of Fusarium poae (NRRL 3287) grown either on sterile corn at 8 C or in Richards solution at room temperature were shown to have emetic activity in pigeons at nonlethal concentration under conditions of oral and intravenous administration. The causative agent was found to be T-2 toxin (3-hydroxy-4,15-diacetoxy-8-[3-methylbutyryloxy]-12,13-epoxy-Delta(9)-trichothecene). Oral and intravenous mean toxic dose values for this compound were found to be 0.72 and 0.15 mg/kg, respectively, as compared with an oral mean lethal dose of 2.75 mg/kg. The fact that T-2 toxin causes emesis at nonlethal concentrations may explain, at least in part, the observance of vomiting as a symptom resulting from ingestion of cereal grains infected with toxic Fusarium species containing T-2 or a similar toxin.  相似文献   

5.
A highly toxic strain ofFusarium sporotrichioides Sherb. (P-11) isolated from wheat in Poland produced on rice culture up to 11 trichothecenes, which are: T-2 toxin (750 ppm), neosolaniol (300 ppm), HT-2 toxin (75 ppm), acetyl T-2 toxin (35ppm), 3′-hydroxy-T-2 (20ppm), T-2 triol (12.5ppm), 3′-hydroxy-HT-2 (1.2ppm), 4-acetoxy-T-2 tetraol (1.1 ppm), 15-acetoxy-T-2 tetraol (0.65 ppm), 8-acetoxy-T-2 tetraol (0.45 ppm), and T-2 tetraol (0.2 ppm). The presence of most of these trichothecenes, including the 3′-hydroxy-derivatives, in the excreta of animals treated with T-2 toxin indicates the existence of some correlation between T-2 toxin metabolism in animals and microorganisms, respectively.  相似文献   

6.
Thirty-seven identified strains of Fusarium, most of them isolated from fescue grass, were tested for their ability to elaborate mycotoxins in laboratory culture. The presence of the toxins was determined by infrared light, thin-layer chromatography, mouse toxicity, fungistatic effects, and phytotoxic properties. A good correlation was demonstrated between T-2 toxin detection by thin-layer chromatography and inhibition of Rhodotorula rubra by culture extracts. All of the strains producing either butenolide or T-2 toxin were toxic to mice with but one exception; those producing T-2 toxin inhibited growth of the yeast.  相似文献   

7.
Moderate clinical, biochemical and hematologic signs of intoxication were observed in mice after single administration of HT-2 toxin (deacetylated derivative of T-2 toxin) in LD50 of 12.75 mg/kg or in 1/5 of LD50 for 7 days. The toxin produced no toxic effect when 1/10 and 1/50 of LD50 were administered for 14 days. With the dose exceeding 1/50 of LD50 a reduction in cytochrome P-450 content, carboxylesterase activity and increased activity of UDP-glucuronosyltransferase and glutathione transferase were recorded. T-2 toxin produced a more pronounced toxic effect, inhibited UDP-glucuronosyltransferase and insignificantly stimulated glutathione transferase activity. Lower HT-2 toxin toxicity is believed to depend on its ability to activate conjugation reactions to a greater extent than T-2 toxin.  相似文献   

8.
A survey was made to detect microorganisms useful for assaying butenolide [4-acetamido-4-hydroxy-2-butenoic acid gamma-lactone] and T-2 toxin [4beta, 15-diacetoxy-8alpha-(3-methylbutyryloxy)-12,13-epoxytricothec -9-en-3alpha-ol]. These mycotoxins produced by strains of Fusarium tricinctum have been implicated in mycotoxicosis of livestock. Although butenolide proved to be a very weak antibiotic, assay discs containing 100 mug of this toxin inhibited Sprillum serpens NRRL B-2052, Vibrio tyrogenus NRRL B-1033, and Xanthomonas campestris NRRL B-1459. T-2 toxin had no effect on 54 bacterial strains but inhibited 6 of 11 fungi. Growth of Rhodotorula rubra NRRL Y-7222 and Penicillium digitatum NRRL 1202 was retarded by assay discs containing 4 mug of T-2 toxin. Solutions with less than 1 mug of T-2 per ml toxin were readily detected by a pea seed germination test. Germination was reduced more than 50% when seeds imbibed solutions of 0.5 mug of T-2 toxin per ml. Butenolide had no effect on pea seed germination at concentrations as high as 200 mug/ml.  相似文献   

9.
Toxins of molds from decaying tomato fruit.   总被引:4,自引:4,他引:0       下载免费PDF全文
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

10.
Acetyl T-2 toxin (3,4,15-triacetoxy-8-isovaleroxy-12,13-epoxy-delta9-trichothecene) was isolated and characterized as a naturally occurring emetic trichothecene from liquid cultures of Fusarium poae (NRRL 3287). Acetyl T-2 toxin was shown to be much less toxic than T-2 toxin in pigeon assays.  相似文献   

11.
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

12.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

13.
The fungal species isolated from Korean cereals (barley, polished barley, wheat, rye, and malt) were Alternaria spp., Aspergillus spp., Chaetomium spp., Drechslera spp., Epicoccum sp., Fusarium spp., and Penicillium spp., etc. The number of Fusarium strains isolated was 36, and their ability to produce Fusarium mycotoxins on rice was tested. Nivalenol (NIV) was produced by Fusarium graminearum (7 of 9 isolates), Fusarium oxysporum (3 of 10 isolates), and Fusarium spp. (7 of 15 isolates). Of 15 isolates of Fusarium spp., 6 formed deoxynivalenol (DON). Fusarenon-X and 3-acetyl-DON were produced by most NIV- and DON-forming isolates, respectively. Zearalenone was produced by 3 isolates of F. graminearum, 1 isolate of Fusarium equiseti, and 11 isolates of Fusarium spp. T-2 toxin was not produced by any Fusarium isolates. The highest concentrations of mycotoxins produced by Fusarium isolates were 77.4 (NIV), 5.3 (DON), 138.3 (fusarenon-X), 40.6 (3-acetyl-DON), and 23.2 (zearalenone) micrograms/g.  相似文献   

14.
Extracts from autoclaved maize culture ofFusarium tumidum strain R-5823 were toxic towardsArtemia salina. Bioassay-guided fractionation of the organic extract led to the isolation of the toxic compound that was identified as the trichothecene toxin neosolaniol (NEOS) by1H,13C nuclear magnetic resonance spectroscopy and low-resolution electronic impact mass spectrometry. The amount of NEOS produced by the strain R-5823 was 300 mg/kg maize culture. NEOS was also detected by HPLC in cultures of four out of seven additional strains ofF. tumidum andGibberella tumida with different origin, in amounts ranging from 1 to 311 mg/kg. This is the first report on the production of a trichothecene toxin byF. tumidum.  相似文献   

15.
The objective of this study was to investigate the effects of selenium on the production of T-2 toxin by a Fusarium poae strain cultured in a synthetic medium containing different concentrations of selenium. The T-2 toxin contents in fermentative products were evaluated by a high performance liquid chromatography (HPLC). The results showed that the production of T-2 toxin was correlated with the concentration of selenium added to the medium. In all three treatments, the addition of 1 mg/L selenium to the medium resulted in a lower toxin yield than the control (0 mg/L); the yield of the toxin began to increase when selenium concentration was 10 mg/L, while it decreased again at 20 mg/L. In summary, T-2 toxin yield in the fermentative product was affected by the addition of selenium to the medium, and a selenium concentration of 20 mg/L produced the maximum inhibitory effect of T-2 toxin yield in the fermentative product of F. poae.  相似文献   

16.
New process for T-2 toxin production.   总被引:8,自引:7,他引:1       下载免费PDF全文
Strains of Fusarium produced high levels of T-2 toxin when cultured on certain media absorbed into vermiculite. Modified Gregory medium was nutritionally complex (2% soya meal, 0.5% corn steep liquor, 10% glucose) and, when inoculated with the appropriate fungal strain, yielded maximum T-2 toxin within 24 days of incubation at 19 degrees C. On Vogel synthetic medium N (H. J. Vogel, Microb. Genet, Bull. 13:42-43, 1956) supplemented with 5% glucose, optimal toxin levels were synthesized after incubation for 12 to 14 days at 15 degrees C. Fusarium tricinctum T-340 produced 714 and 353 mg/liter on modified Gregory medium and Vogel synthetic medium N plus 5% glucose, respectively. Improved analytical procedures were developed and involved aqueous methanol extraction, purification by liquid-liquid partitions, and gas-chromatographic quantitation.  相似文献   

17.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

18.
Fusarium oxysporum isolated from roots of and soil around Baccharis species from Brazil produced the trichothecenes T-2 toxin, HT-2 toxin, diacetoxyscirpenol, and 3'-OH T-2 (TC-1), whereas Fusarium sporotrichioides from the same source produced T-2 toxin, HT-2 toxin, acetyl T-2, neosolaniol, TC-1, 3'-OH HT-2 (TC-3), iso-T-2, T-2 triol, T-2 tetraol, and the nontrichothecenes moniliformin and fusarin C. Several unknown toxins were found but not identified. Not found were macrocyclic trichothecenes, zearalenone, wortmannin, and fusarochromanone (TDP-1).  相似文献   

19.
The effect of low dose peroral Fusarium produced T-2 toxin intake upon the ovarian function was evaluated in ewes (n = 30; Trial 1) and heifers (n = 7; Trial 2). Half of the ewes and all of the heifers were fed rich, acidosis-inducing concentrate. The 30 ewes were divided into 6 groups of 5 animals each. They were given 0, 0.3 or 0.9 mg/day (0, 5 or 15 ug/kg) purified T-2 toxin per os for 21 days (3x2 factorial design). Four of the 7 heifers were fed 9 mg/day (25 ug/kg) of the same purified T-2 toxin for 20 days while 3 remained untreated. The estrus cycles in all animals were synchronized prior to the trials and the T-2 exposure was started in the mid-luteal phase. The acidic condition in the rumen was estimated by the determination of urinary net acid-base excretion. The ovarian activity was followed with blood sampling for progesterone on alternate days (Trial 1) or with ultrasonography and sampling for progesterone daily (Trial 2). All of the heifers and concentrate-fed ewes showed a compensated acidosis, during first two thirds of T-2 exposure. In Trial 1, ovarian malfunction manifested as lower P4 peak concentration in the midluteal phase, shortening of the CL lifespan and prolonged follicular phases. These malfunctions were detected in 3 and 3 ewes fed concentrate and 0.3 mg and 0.9 mg T-2 toxin. Lower P4 peak concentration was observed in 1 ewe fed regular diet and 0.9 mg T-2 toxin. None of the control and acidotic groups (0 mg T-2), or ewes fed regular diet with 0.3 mg T-2 showed any ovarian malfunction. In Trial 2, after PGF2, administration the ovulation occured later and the plasma progesterone level remained low (< 3 nmol/l) for a longer period in T-2 treated heifers, than their untreated control mates (5.0+/-0.7 vs 3.7+/-0.5 d, P<0.05 and 8.3+/-0.4 vs 6.3+/-0.9 d, P<0.01, respectively). These results show that the peroral T-2 intake can significantly retard the folliculus maturation and ovulation and perhaps the subsequent luteinisation also in ruminants kept on concentrate-rich diet.  相似文献   

20.
A LC-DAD method is proposed for the determination of the T-2 and HT-2 toxins in cultures of Fusarium langsethiae in oat-based and other in vitro media. Test media consisted of freshly prepared milled oats to which T-2 and HT-2 toxin stock solutions were added. Different mixtures of extraction solvent (acetonitrile:water and methanol:water), extraction times (30′, 60′ or 90′) and drying methods were investigated. Results showed that extraction with methanol:water (80:20, v/v) for 90 min, drying with N2 and subsequent analysis by LC-DAD was the fastest and most user friendly method for detecting HT-2 and T-2 toxins production by F. langsethiae strains grown on oat-based media at levels of 0.459 and 0.508 mg of toxin/kg of agar, respectively. The proposed method was used to investigate toxin production of 6 F. langsethiae strains from northern Europe and provided clear chromatograms with no interfering peaks in media with and without glycerol as water activity modifier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号