首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies were conducted in 1981 and 1982 to ascertain the effects of pod removal on senescence of nodulating and nonnodulating isolines of soybean (Glycine max [L.] Merr. cv Harosoy) plants. Specifically, the test hypothesis was that nodules act as a nitrogen source and a carbohydrate sink which would in turn prevent or delay senescence in the absence of pods. Senescence was judged by changes in metabolite levels, in dry matter accumulation, and by visual observation.

For both nodulated and nonnodulated plants, pod removal had no effect on the magnitude or rate of dry matter and reduced-N accumulation by whole plants. Phosphorus accumulation was significantly less in both nodulated- and nonnodulated-depodded plants, compared with respective control plants with pods. These data suggested a role for pods in phosphorus uptake. Accumulation of dry matter, reduced N, and phosphorus ceased at approximately the same time for all treatments.

Pod removal did affect partitioning of plant constitments, with leaves and stems of depodded plants serving as a major alternate sink for accumulation of dry matter, reduced N, phosphorus, and nonstructural carbohydrates (primarily starch). While depodded plants eventually lost a significant amount of leaves, leaf drop was delayed relative to plants with pods; and depodded plants still retained some green leaves at 2 weeks past grain maturity of control (podded) plants.

The results indicated that senescence patterns of soybean plants were the same for nodulated and nonnodulated plants, and that pods did not control the initiation of senescence, but rather altered the partitioning of plant constituents and the visual manifestations of senescence.

  相似文献   

2.
Soybean (Glycine max [L.] Merr.) germplasm, isogenic except for loci controlling male sterility (ms1) and nodulation (rj1), was used to investigate the effects of reproductive tissue development and source of nitrogen nutrition on accumulation, transport, and partitioning of nitrogen in a greenhouse experiment. Nodulated plants were supplied nitrogen-free nutrient solution, and nonnodulated plants were supplied nutrient solution containing 20 millimolar KNO3. Plants were sampled from flowering until maturity (77 to 147 days after transplanting).

Accumulation rates of nitrogen in whole plants during reproductive growth were not significantly different among the four plant types. Nitrogen accumulation in the sterile, nonnodulated plants, however, ceased 2 weeks earlier than in fertile, nonnodulated or fertile and sterile, nodulated plants. This early cessation in nitrogen accumulation resulted in sterile, nonnodulated plants accumulating significantly less whole plant nitrogen by 133 days after transplanting (DAT) than fertile, nonnodulated plants. Thus, changing the site of nitrogen assimilation from nodules (N2-fixing plants) to roots and leaves (NO3-fed plants) resulted in similar whole-plant nitrogen accumulation rates in fertile and sterile plants, despite the absence of seed in the latter.

Leaflet and stem plus petiole tissues of both types of sterile plants had significantly higher nitrogen concentrations after 119 DAT than both types of fertile plants. Significantly higher concentrations and exudation rates of nonureide, reduced-nitrogen in xylem sap of sterile than of fertile plants after 105 DAT were observed. These latter results indicated possible cycling of nonureide, reduced-nitrogen from the downward phloem translocation stream to the upward xylem translocation stream in roots of sterile plants. Collectively, these results suggest a lack of sinks for nitrogen utilization in the shoots of sterile plants. Hence, comparison of nitrogen accumulation rates for sterile and fertile plants does not provide a definitive test of the hypothesis that reproductive tissue development limits photosynthate availability for support of N2 fixation and nitrate assimilation in determinate soybeans.

Nitrogen assimilation during reproductive growth met a larger proportion of the reproductive-tissue nitrogen requirement of nitrate-dependent plants (73%) than of N2-fixing plants (63%). Hence, vegetative-tissue nitrogen mobilization to reproductive tissue was a more prominent process in N2-fixing than in nitrate-dependent plants. N2-fixing plants partitioned nitrogen to reproductive tissue more efficiently than nitrate-dependent plants as the reproductive tissues of the former and latter contained 65 and 55%, respectively, of the whole-plant nitrogen at the time that nitrogen accumulation in reproductive parts had ceased (133 DAT).

  相似文献   

3.
Short-term (31-hour diurnal) growth-chamber studies were conducted to determine the effects of removing the vegetative apex (meristem and developing trifoliolate leaves) on net photosynthesis (changes in plant dry weight), on distribution of metabolites among plant parts, and on nitrate metabolism and reduced-N accumulation by soybean [Glycine max (L.) Merr.] seedlings. Roots and stems served as alternate sinks for dry matter accumulation in the absence of the vegetative apex. Sugar concentration in roots increased (42%) within 4 hours of vegetative apex removal, and remained higher than for the controls during the 31-hour experimental period. Nitrate assimilation (nitrate reductase activity and total accumulation of reduced-N) was also enhanced in response to vegetative apex removal. Although dry matter accumulation was similar between treated and control plants (113 versus 116 milligrams per plant) over the 31-hour sampling period, more nitrate (1.31 versus 0.79 milligrams per plant) and more reduced-N (3.96 versus 3.45 milligrams per plant) accumulated in treated plants during the same interval. It was concluded that vegetative apex removal had little effect on overall net photosynthesis of soybean seedlings during the 31-hour treatment period, but did alter partitioning of photosynthate and enhanced uptake, transport, and reduction of nitrate. Implications are that uptake and metabolism of nitrate by soybeans may be limited by flux of carbohydrate to the roots, although hormonal effects due to vegetative apex removal cannot be ruled out.  相似文献   

4.
Partitioning and utilization of assimilated C and N were compared in nonnodulated, NO3-fed and nodulated, N2-fed plants of white lupin (Lupinus albus L.). The NO3 regime used (5 millimolar NO3) promoted closely similar rates of growth and N assimilation as in the symbiotic plants. Over 90% of the N absorbed by the NO3-fed plants was judged to be reduced in roots. Empirically based models of C and N flow demonstrated that patterns of incorporation of C and N into dry matter and exchange of C and N among plant parts were essentially similar in the two forms of nutrition. NO3-fed and N2-fed plants transported similar types and proportions of organic solutes in xylem and phloem. Withdrawal of NO3 supply from NO3-fed plants led to substantial changes in assimilate partitioning, particularly in increased translocation of N from shoot to root. Nodulated plants showed a lower (57%) conversion of C or net photosynthate to dry matter than did NO3-fed plants (69%), and their stems were only half as effective as those of NO3-fed plants in xylem to phloem transfer of N supplied from the root. Below-ground parts of symbiotic plants consumed a larger share (58%) of the plants' net photosynthate than did NO3-fed roots (50%), thus reflecting a higher CO2 loss per unit of N assimilated (10.2 milligrams C/milligram N) by the nodulated root than by the root of the NO3-fed plant (8.1 milligrams C/milligram N). Theoretical considerations indicated that the greater CO2 output of the nodulated root involved a slightly greater expenditure for N2 than for NO3 assimilation, a small extra cost due to growth and maintenance of nodule tissue, and a considerably greater nonassimilatory component of respiration in root tissue of the symbiotic plant than in the root of the NO3-fed plant.  相似文献   

5.
The objectives of this work were to determine the effect of sink strength (presence or absence of pods) and nitrogen source (nodulating versus nonnodulating plants) on enzymic activities, chlorophyll concentration, and senescence of soybean (Glycine max [L.] Merr. cv Harosoy) isolines. A 2-year (1981-1982) field study was conducted.

For both nodulated and nonnodulated plants, ribulose bisphosphate carboxylase (RuBPCase) activity of upper-canopy leaves was decreased by pod removal in both years, while chlorophyll concentration was decreased in 1981 only. Nonnodulated plants had lower RuBPCase activity in 1981 and lower chlorophyll concentration in both years compared with nodulated plants. In both years, and for all treatments, RuBPCase activity and chlorophyll began to decline at about the same time, but the rate of decline was less for depodded than for podded plants. Leaves in the middle and lower parts of the canopy had similar RuBPCase activity and chlorophyll concentration trends as upper-canopy leaves for all treatments.

Profiles of nitrate reductase activity (NRA) were similar for all treatments in both 1981 and 1982. Acetylene reduction profiles were similar for nodulated-podded and nodulated-depodded plants. The peak and decline in NRA profiles preceded the peak and decline in acetylene reduction profiles. The rate of decline in acetylene reduction activity was less for depodded plants, especially in 1982, but activities reached zero by the final sampling time. Thus, nodule senescence was not prevented by pod removal.

Based on seasonal profiles of RuBPCase activity, chlorophyll, NRA, and acetylene reduction activity, the initiation of senescence appeared to occur at the same approximate time for all treatments and, thus, did not depend on the presence or absence of pods or nodules. The hypothesis that nodules act as a nitrogen source and carbohydrate sink to delay senescence in the absence of pods was not correct.

  相似文献   

6.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

7.
Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N2-dependent or NO3-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO3-supplied plants in both cultivars had lower starch accumulation rates than N2-dependent plants. Leaf extracts of NO3-supplied plants had higher activities of sucrose phosphate synthase (SPS) and cytoplasmic fructose-1,6-bisphosphatase (FBPase) than N2-dependent plants. The variation in starch accumulation was correlated negatively with the activity of SPS, but not the activity of FBPase, UDP-glucose pyrophosphorylase, or ADP-glucose pyrophosphorylase. These results suggested that starch accumulation is biochemically controlled, in part, by the activity of SPS. Leaf starch content at the beginning of the photoperiod was lower in NO3-supplied plants than N2-dependent plants in both cultivars which suggested that net starch utilization as well as accumulation was affected by N source.

Total dry matter accumulation and dry matter distribution was affected by N source in both cultivars, but the cultivars differed in how dry matter was partitioned between the shoot and root as well as within the shoot. The activity of SPS was correlated positively with total dry matter accumulation which suggested that SPS activity is related to plant growth rate. The results suggested that photosynthate partitioning is an important but not an exclusive factor which determines whole plant dry matter distribution.

  相似文献   

8.
Transport of nitrogen in the xylem of soybean plants   总被引:54,自引:37,他引:17       下载免费PDF全文
Experiments were conducted to characterize the distribution of N compounds in the xylem sap of nodulated and nonnodulated soybean plants through development and to determine the effects of exogenous N on the distribution of N compounds in the xylem. Xylem sap was collected from nodulated and nonnodulated greenhouse-grown soybean plants (Glycine max [L.] Merr. “Ransom”) from the vegetative phase to the pod-filling phase. The sum of the nitrogen in the amino acid, nitrate, ureide (allantoic acid and allantoin), and ammonium fractions of the sap from both types of plants agreed closely with total N as assayed by a Kjeldahl technique. Sap from nodulated plants supplied with N-free nutrient solution contained seasonal averages of 78 and 20% of the total N as ureide-N and amino acid-N, respectively. Sap from nonnodulated plants supplied with a 20 millimolar KNO3 nutrient solution contained seasonal averages of 6, 36, and 58% of total N as ureide-N, amino acid-N, and nitrate-N, respectively. Allantoic acid was the predominant ureide in the xylem sap and asparagine was the predominant amino acid. When well nodulated plants were supplied with 20 millimolar KNO3, beginning at 65 days, C2H2 reduction (N2 fixation) decreased relative to nontreated plants and there was a concomitant decrease in the ureide content of the sap. A positive correlation (r = 0.89) was found between the ureide levels in xylem sap and nodule dry weights when either exogenous nitrate-N or urea-N was supplied at 10 and 20 millimolar concentrations to inoculated plants. The results demonstrate that ureides play a dominant role in N transport in nodulated soybeans and that the synthesis of ureides is largely dependent upon nodulation and N2 fixation.  相似文献   

9.
Biological N2 fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars ( Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N2 fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N2 fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N2 fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.  相似文献   

10.
Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20% O2 (Ar:O2) and air (Air) atmospheres affected N assimilation (NH4NO3 and N2 fixation) and the partitioning of photosynthate to roots and nodules. Application of NH4NO3 to nonnodulated half-root systems enhanced root growth and root respiration at the site of application. A second experiment applied Ar:O2 or air to the two sides of nodulated soybean half-root systems for 11 days in the following combinations: (a) Air to both sides (Air/Air); (b) Air to one side, Ar:O2 to the other (Air/Ar:O2), and (c) Ar:O2 to both sides (Ar:O2/Ar:O2). Results indicated that dry matter and current photosynthate (14C) were selectively partitioned to nodules and roots where N2 was available. Both root and nodule growth on the Air side of Air/Ar:O2 plants was significantly greater than the Ar:O2 side. The relative partitioning of carbon and current photosynthate between roots and nodules on a half-root system was also affected by N2 availability. The Ar:O2 sides partitioned relatively more current photosynthate to roots (57%) than nodules (43%), while N2-fixing root systems partitioned 36 and 64% of the carbon to roots and nodules, respectively. The Ar:O2 atmosphere decreased root and nodule respiration by 80% and nitrogenase activity by 85% compared to half-root systems in Air while specific nitrogenase activity of nodules in Ar:O2 was 50% of nodules supplied Air. Results indicated that nitrogen assimilation, whether from N2 fixation or inorganic sources, had a localized effect on root development. Nodule development accounted for the major decrease in total photosynthate partitioning to non-N2-fixing nodules. Soybean compensates for ineffective nodulation by controlling the flux of carbon to ineffective nodules and their associated roots.  相似文献   

11.
To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as 15NH4 14NO3 or 14NH4 15NO3 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N2 fixation supplied 38% of the N in Casuarina. Biomass, N and 15N contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as 15NH4+ than 15NO3-. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either 15N source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of 15N source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with 15NH4+ than with 15NO3-. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N2-fixing to an N2-fixing plant may reflect the very high N demand of N2-fixing species.  相似文献   

12.
Gastal  F.; Belanger  G. 《Annals of botany》1993,72(5):401-408
Canopy gross photosynthesis of tall fescue receiving three tofour rates of N fertilization was studied under field conditionsduring three contrasting growing seasons. Under non-limitingN growing conditions, the growing seasons did not have a significanteffect on the maximum canopy gross photosynthesis (canopy grossphotosynthesis at saturating PAR) and the maximum light yield(quantum efficiency of the canopy at low PAR). In the absenceof N fertilization and for a similar LAI, the values of themaximum canopy gross photosynthesis were approximately equalto 70% of those obtained under non-limiting N conditions. Thisresponse of the tall fescue canopy to N concentration is muchsmaller than that reported at the leaf level. The reductionin canopy photosynthetic capacity with no N applied comparedto non-limiting N conditions is much less than the reductionobserved previously in above-ground dry matter accumulation.The effect of N fertilization on above-ground dry matter accumulationis due primarily to changes in C partitioning and the resultingfaster leaf area development and greater light interceptionrather than the effect of N on the canopy photosynthetic capacityper se .Copyright 1993, 1999 Academic Press Festuca arundinacea Schreb., photosynthesis, nitrogen, grass, carbon  相似文献   

13.
The nodulating soybean (Enrei) and its non-nodulating mutant (EN 1282) were grown in outdoor plots for 2 years (1994: extraordinary dry, high temperature, 1995: ordinary year). Carbon and nitrogen accumulation, delta 13C and delta 15N values in plant parts and xylem fluids and delta 15N values in the water-extractable soil N were analysed throughout the growing period. Plant growth in 1994 was rapid during the early growth stages, but no pods were produced. In 1995, plant growth was normal and pods were formed. The delta 13C values of the leaves were less negative in 1994 than in 1995 and the nodulated plants showed less negative delta 13C values than non-nodulated plants in both years. The delta 13C values of the leaves during the vegetative phase were positively correlated to the leaf N concentrations. Leaf N concentrations in their turn were influenced by nodulation and weather conditions and/or soil available N. The delta 15N values in the plants and xylem fluids were lower in the nodulated soybean than in non-nodulated soybean in both years, and estimates of the contribution of N2 fixation in nodulated plants based on plant top delta 15N values were 7-14% in 1994 and 37-63% in 1995. The delta 13C values of xylem fluids did not differ between nodulated and non-nodulated plants. Thus, the expected contribution by phosphopenolpyruvate carboxylase-mediated CO2 fixation in the root nodules to plant C-incorporation could not have been significant.  相似文献   

14.
Cowpea plants (Vigna unguiculata) infected with the root hemiparasiticangiosperm Striga gesnerioides accumulated less biomass thanuninfected plants over a growth period of 60 d. The allometricrelationship between shoot and root dry weight was similar inparasitized plants relative to control plants, as was the proportionof dry matter partitioned into leaf, stem and root tissue. However,infected plants failed to make any significant investment ofdry matter in pods. The rate of photosynthesis of the youngestfully expanded leaf of parasitized plants was significantlylower than for control plants. The lower rates of photosynthesiswere not attributable to stomatal limitation, a loss of chlorophyllor to an accumulation of carbohydrate. The depression of photosynthesisin the young leaves was transient. As control leaves aged, photosynthesisdeclined. This also occurred in Striga infected plants, butto a lesser extent resulting in higher rates of photosynthesisin mature leaves when compared to those of uninfected plants.The foliar nitrogen content of parasitized plants was higherthan control plants consistent with the slower rate of photosyntheticdecline of older leaves. The data are discussed with respectto the influence of parasitic weeds on host growth and photosynthesis. Key words: Cowpea, hemiparasite, allometry, nitrogen  相似文献   

15.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

16.
The rising atmospheric CO2 concentration resulting from industrial development may enhance photosynthesis and plant growth. However, there is a lack of research concerning the effect of combined factors such as CO2, temperature and water availability on plant regrowth following cutting or grazing, which represent the usual methods of managing forage legumes like alfalfa. Elevated CO2, temperature and drought can interact with cutting factors (e.g. cutting frequency or height), and source-sink balance differences before and after defoliation can modify photosynthetic behaviour and dry matter accumulation, as well as dry matter partitioning between above- and belowground organs. The aim of our study was to determine the interactive effect of CO2 (ambient, around 350 μmol mol−1 versus 700 μmol mol−1), temperature (ambient versus ambient + 4 °C) and water availability (well-irrigated versus partially irrigated) on dry matter partitioning and photosynthesis in nodulated alfalfa after vegetative normal growth and during regrowth. At the end of vegetative normal growth, CO2 enhanced dry matter accumulation despite photosynthesis being down-regulated at the end of this period. Photosynthesis was stimulated by elevated CO2 and resulted in greater dry matter accumulation during the regrowth period. Aboveground organs were affected more by drought than belowground organs during the entire experiment, particularly during vegetative normal growth. The higher drought tolerance (greater growth) observed during the regrowth period may be related to higher mass and greater reserves accumulated in the roots of plants.  相似文献   

17.
The economy of carbon in nodulated white lupin (Lupinus albusL.) was studied in terms of consumption of net photosynthatein nitrogen fixation, in maintenance of respiration, and inthe production of dry matter and protein. Net photosynthesisrose to a maximum in early fruiting and then fell abruptly dueto shedding of leaves. Nodulated roots acquired translocateequivalent to 51% of the plant's net photosynthate, 78% of thecarbon of this translocate being respired, 10% entering drymatter, and 12% returning to the shoot attached to productsof nitrogen fixation. Nodules utilized 4?0–6?5 g C infixing 1 g nitrogen. Photosynthate was utilized most effectivelyfor nitrogen fixation in late vegetative growth. Fruits sequestered16% of the plant's net photosynthate, shoot night respiration17%, and dry matter formation in shoot vegetative parts 22%.Averaged over growth, 9?9 g net photosynthate was required toproduce 1 g seed dry matter and 31 g net photosynthate to produce1 g seed protein. Budgets for utilization of the carbon of netphotosynthate were constructed for 10 d intervals of the plant'sgrowth cycle. Feeding of shoots with 14CO2 resulted in radiocarbonbecoming partitioned approximately as predicted by these budgets.The dependence of root respiration on recent photosynthate wasassessed by following the time course of release of 14CO2 tothe rooting medium of the 14CO-labelled plants.  相似文献   

18.
Summary Two varieties of sugarcane, and nodulated and non-nodulated soybean isolines, were planted in a soil previously mixed with15N-labelled plant material. 45 days was allowed to elapse before planting, to permit initiation of organic matter mineralization. Plants were grown for 60 days, then harvested, dried, weighed and analysed for total N. Analysis of soil samples pre-incubated in the laboratory was carried out to evaluate ammonium and nitrate from added organic matter. Dry weights of the soybean isolines were similar, but total N was higher for the nodulated line. Both sugarcane varieties showed similar weight and total N. Nitrogen derived from applied organic matter (NdfOM) was higher in non-nodulated soybean than in all other plants. Although there is the possibility of different15N availabilities between species, nitrogen derived from fixation (Nfix) was calculated based on the15N enrichment of the non-nodulating soybean. Nfix was 72% for nodulating soybean and ranged from 19 to 39% for different parts of sugarcane plants, despite high levels of available-N. Nitrogen derived from soil was calculated by difference. NdfOM was lower in roots than in upper parts (leaves+stalks) of plants. Use of15N labelled organic matter seems a useful approach to the longer term measurement of N2-fixation.IAEA Project BRA/5/009-CENA.  相似文献   

19.
Britz SJ 《Plant physiology》1990,94(1):350-356
Studies conducted in controlled environments indicate that daylength affects the proportion of photosynthate stored in leaves as starch or sucrose. To examine the response of partitioning to natural daylight, soybeans (Glycine max [L.] Merr. cv Williams) were grown at 12 different times between May and November in a constant temperature greenhouse without supplemental lighting. Plants were transferred from the greenhouse to a controlled environment chamber at the end of civil twilight at a set developmental stage (expanding seventh trifoliolate leaf, counting acropetally). Net photosynthesis and the accumulation of starch and sugar in fully expanded fourth trifoliolate leaves were determined the following day under standard conditions in the chamber (lights-on synchronized with sunrise). Photosynthesis on a leaf area basis decreased about 10% between midsummer and early autumn. Leaf soluble sugar accumulation was low at all harvests. However, a twofold increase in photosynthate partitioning into starch occurred over the same time period, resulting in an 80% increase in absolute starch accumulation rate. Starch was responsible for about 78% of the increase in leaf dry matter during the light at all harvests, indicating that starch accumulation as affected by prior daylight conditions will alter export of photosynthate during the light period. Photosynthate partitioning into starch was linearly correlated with daylength at harvest, prior average peak solar irradiance, and other parameters that correlated with daylength and solar radiation such as harvested top dry matter. The relation between growth and seasonal changes in daylight (including daylength, irradiance, and light integral) are discussed in relation to photosynthate partitioning under field conditions.  相似文献   

20.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号