首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gliadins, the major wheat seed storage proteins, are encoded by a multigene family. Northern blot analysis shows that gliadin genes are transcribed in endosperm tissue into two classes of poly(A)+ mRNA, 1400 bases (class I) and 1600 bases (class II) in length. Using poly(A)+ RNA from developing wheat endosperm we constructed a cDNA library from which a number of clones coding for alpha/beta and gamma gliadins were identified by hybrid-selected mRNA translation and DNA sequencing. These cDNA clones were used as probes for the isolation of genomic gliadin clones from a wheat genomic library. One such genomic clone was characterized in detail and its DNA sequence determined. It contains a gene for a 33-kd alpha/beta gliadin protein (a 20 amino acid signal peptide and a 266 amino acid mature protein) which is very rich in glutamine (33.8%) and proline (15.4%). The gene sequence does not contain introns. A typical eukaryotic promoter sequence is present at -104 (relative to the translation initiation codon) and there are two normal polyadenylation signals 77 and 134 bases downstream from the translation termination codon. The coding sequence contains some internal sequence repetition, and is highly homologous to several alpha/beta gliadin cDNA clones. Homology to a gamma-gliadin cDNA clone is low, and there is no homology with known glutenin or zein cDNA sequences.  相似文献   

2.
3.
A novel proline-rich protein from wheat   总被引:7,自引:0,他引:7  
A cDNA (WPRP1) encoding a wheat proline-rich protein has been isolated and sequenced. The amino acid composition shows 45% proline, with high levels of methionine, lysine and glutamic acid. The derived 378 residue amino acid sequence has a highly repetitive structure which is unlike those of other proline-rich proteins. The WPRP1 cDNA clone was used to determine the copy number and chromosomal location of the WPRP1 gene by restriction fragment length polymorphism analysis of wheat inbred lines. Although WPRP1 is encoded by a single-copy gene it is also a representative of a larger family of related sequences. RNA gel blot analysis showed that expression of WPRP1 is highest in rapidly growing tissue which together with its amino acid composition suggests a structural role for the encoded protein.  相似文献   

4.
A number of clones containing major endosperm-specifically transcribed gene copies were selected from a cDNA library developed on the basis of barley endosperm mRNA. Approx. 30% of the recombinant clones carried sequences homologous to mRNA of various cereal storage proteins. Some of them appeared to be related to cDNA clones of wheat and barley storage proteins. The typical insert length ranged from 0.3 to 1.7 kB. A couple of clones among them were selected which revealed positive hybridization with all probes used. The positive signals disappeared after stringent washing of the filters. The nucleotide sequences of two representatives of the group were determined and corresponding amino acid sequence deduced after subsequent computer analysis. The comparison with known cereal storage protein genes revealed relatively high homology level with the central part of wheat high molecular weight (HMW) glutenine subunit genes. The fact suggests the cloned gene to belong to barley D-hordein family.  相似文献   

5.
The initial step in the conjugation of ubiquitin to substrate proteins involves the activation of ubiquitin by ubiquitin activating enzyme, E1. Previously, we purified and characterized multiple species of E1 from wheat germ. We now describe the isolation and characterization of a cDNA clone encoding E1 from wheat. This clone (UBA1) was isolated from a cDNA expression library with anti-wheat E1 antibodies. It contained an open reading frame coding for 1051 amino acids and directed the synthesis of a protein that comigrated with a wheat germ E1 of 117 kDa. UBA1 was confirmed as encoding E1 by (i) comparison of the peptide map of the protein product of UBA1 synthesized in Escherichia coli with that of purified E1 from wheat, and (ii) amino acid sequence identity of peptides generated from purified E1 with regions of the derived amino acid sequence of UBA1. The isolation of two additional cDNAs closely related to UBA1 indicated that E1 was encoded by a small gene family in wheat. Nonetheless, a single poly(A+) mRNA size class of 4 kilobases hybridized with UBA1. When expressed in E. coli, the product of UBA1 catalyzed the formation of a thiol ester linkage between ubiquitin and an ubiquitin carrier protein. The ability of E. coli containing UBA1 to synthesize an active protein will allow us to identify domains important for E1 function using in vitro mutagenesis.  相似文献   

6.
A wheat cDNA encoding a glycine-rich RNA-binding protein, whGRP-1, was isolated. WhGRP-1 contains two conserved domains, the RNA-binding motif (RNP motif) combined with a series of glycine-rich imperfect repeats, characteristic of a conserved family of plant RNA-binding proteins. Northern analysis revealed that whGRP-1 mRNA accumulates to high levels in roots and to lower levels in leaves of wheat seedlings. whGRP-1 mRNA accumulation is not enhanced by exogenous abscisic acid in seedlings and accumulates to very high levels during wheat embryo development, showing a pattern different from that of the ABA-inducible wheat Em gene.  相似文献   

7.
8.
Polyclonal antibodies were raised against a purified 22 kDa triticin polypeptide () and were used to screen a wheat seed cDNA library in the Escherichia coli expression vector gt11. The isolated cDNA clones were grouped into three families based on their cross-hybridization reactions in DNA dot-blot studies. Southern blots of genomic DNAs extracted from ditelocentric and nullisomic-tetrasomic lines of Chinese Spring wheat, probed with the excised cDNA inserts, indicated that one of the three families (9 clones) had triticin clones. This was finally confirmed by comparing the predicted amino acid sequences of two of these clones (Tri-12, Tri-25) with the published tryptic peptide sequences of triticin. The Southern blots also showed that there is at least one triticin gene located on the short arm of each of the homoeologous group 1 chromosomes (1A, 1B, 1D), although till now no triticin protein product has been identified for the chromosome 1B. The nucleotide sequence of the largest triticin cDNA clone Tri-25 (1567 bp) is presented here, and its predicted amino acid sequence shows strong homology with the legumin-like proteins of oats (12S globulin), rice (glutelin) and legume seeds. A unique feature of the triticin sequence is that it contains a lysine-rich repetitive domain, inserted in the hypervariable region of the typical legumin-like genes. Northern blotting of total RNA extracted from different stages of the developing wheat seed revealed that the triticin gene expression is switched on 5–10 days after anthesis (DAA). There was a steady increase in the level of triticin mRNA until 20 DAA, after which it started decreasing. The maximum mRNA accumulation occurred between 17 and 20 DAA. These observations conform closely with the published data on triticin protein accumulation during grain development.  相似文献   

9.
D Bgu  P V Graves  C Domec  G Arselin  S Litvak    A Araya 《The Plant cell》1990,2(12):1283-1290
RNA editing of subunit 9 of the wheat mitochondrial ATP synthase has been studied by cDNA and protein sequence analysis. Most of the cDNA clones sequenced (95%) showed that editing by C-to-U transitions occurred at eight positions in the coding region. Consequently, 5 amino acids were changed in the protein when compared with the sequence predicted from the gene. Two edited codons gave no changes (silent editing). One of the C-to-U transitions generated a stop codon by modifying the arginine codon CGA to UGA. Thus, the protein produced is 6 amino acids shorter than that deduced from the genomic sequence. Minor forms of cDNA with partial or overedited sequences were also found. Protein sequence and amino acid composition analyses confirmed the results obtained by cDNA sequencing and showed that the major form of edited atp9 mRNA is translated.  相似文献   

10.
Mitochondria derived from Triticum timopheevi have a chimeric gene, orf256, immediately upstream from coxI. Antibodies to a peptide corresponding to a part of the encoded amino acid sequence of orf256 detect a 7 kDa protein on western blots of mitochondrial proteins from cytoplasmic male-sterile (cms) wheat (T. aestivum nucleus, T. timopheevi mitochondria) but not in mitochondrial proteins from T. aestivum, T. timopheevi, or cms plants restored to fertility by introduction of nuclear genes for fertility restoration. The 7 kDa protein appears to serve as a marker for cms wheat. Its occurrence as an integral protein of the inner membrane may indicate a cms effect through an influence on mitochondrial membrane function.  相似文献   

11.
The murine cell membrane glycoprotein PC-1 is a homodimer with restricted tissue distribution, being first characterized in plasma cells. We now describe the isolation of cDNA clones encoding the human homolog of the murine PC-1 protein, its complete amino acid sequence, and its chromosomal location. Overall, the amino acid sequence of the human protein is about 80% identical to the murine protein, although the extent of homology varies in different domains. It had not been possible to assign a definitive amino terminus to the murine protein. Comparison of the murine and human sequence necessitates reassignment of the amino terminus, resulting in a cytoplasmic tail of 24 amino acids rather than 58 amino acids as previously published for the mouse. The sequence of several independently obtained cDNA clones indicates that the 3' end of the mRNA is subject to alternative splicing. Southern blots suggest a single copy gene. In situ chromosomal hybridization localizes the gene for human PC-1 to chromosome 6q22-q23, a common site for deletions in human lymphoid neoplasia.  相似文献   

12.
Molecular cloning of wheat dihydrodipicolinate synthase   总被引:7,自引:0,他引:7  
  相似文献   

13.
When present in high copy number plasmids, the nuclear genes MRS3 and MRS4 from Saccharomyces cerevisiae can suppress the mitochondrial RNA splicing defects of several mit- intron mutations. Both genes code for closely related proteins of about Mr 32,000; they are 73% identical. Sequence comparisons indicate that MRS3 and MRS4 may be related to the family of mitochondrial carrier proteins. Support for this notion comes from a structural analysis of these proteins. Like the ADP/ATP carrier protein (AAC), the mitochondrial phosphate carrier protein (PiC) and the uncoupling protein (UCP), the two MRS proteins have a tripartite structure; each of the three repeats consists of two hydrophobic domains that are flanked by specific amino acid residues. The spacing of these specific residues is identical in all domains of all proteins of the family, whereas spacing between the hydrophobic domains is variable. Like the AAC protein, the MRS3 and MRS4 proteins are imported into mitochondria in vitro and without proteolytic cleavage of a presequence and they are located in the inner mitochondrial membrane. In vivo studies support this mitochondrial localization of the MRS proteins. Overexpression of the MRS3 and MRS4 proteins causes a temperature-dependent petite phenotype; this is consistent with a mitochondrial function of these proteins. Disruption of these genes affected neither mitochondrial functions nor cellular viability. Their products thus have no essential function for mitochondrial biogenesis or for whole yeast cells that could not be taken over by other gene products. The findings are discussed in relation to possible functions of the MRS proteins in mitochondrial solute translocation and RNA splicing.  相似文献   

14.
15.
Topogenic signals in integral membrane proteins   总被引:65,自引:0,他引:65  
Integral membrane proteins are characterized by long apolar segments that cross the lipid bilayer. Polar domains flanking these apolar segments have a more balanced amino acid composition, typical for soluble proteins. We show that the apolar segments from three different kinds of membrane-assembly signals do not differ significantly in amino acid content, but that the inside/outside location of the polar domains correlates strongly with their content of arginyl and lysyl residues, not only for bacterial inner-membrane proteins, but also for eukaryotic.proteins from the endoplasmic reticulum, the plasma membrane, the inner mitochondrial membrane, and the chloroplast thylakoid membrane. A positive-inside rule thus seems to apply universally to all integral membrane proteins, with apolar regions targeting for membrane integration and charged residues providing the topological information.  相似文献   

16.
A wheat HMW glutenin subunit gene reveals a highly repeated structure.   总被引:25,自引:2,他引:23       下载免费PDF全文
A wheat genomic library was screened with two synthetic oligonucleotides (24 and 25 bases in length) complementary to a partial cDNA clone encoding a glutenin gene [Thompson et al. (1983) Theor. Appl. Genet. 67, 87-96]. Glutenins are large molecular weight aggregated proteins of grain endosperm, and major determinants of bread making quality of wheat. Of the two clones obtained one was fully characterized. It contained the sequence of the high molecular weight subunit of glutenin. The amino acid sequence derived from the gene sequence reveals a mature protein (817 amino acids) with a highly repeated structure of two different motifs corresponding to the high glutamine (35.7%), glycine (20.1%) and proline (13.1%) content. The gene does not contain an intron, and possesses a typical eukaryotic promoter; the RNA initiation site is 25-30 bases downstream.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号