首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li XD  Saito J  Ikebe R  Mabuchi K  Ikebe M 《Biochemistry》2000,39(9):2254-2260
Recent findings have suggested that the interaction between the two heads is critical for phosphorylation-dependent regulation of smooth muscle myosin. We hypothesized that the interaction between the two regulatory light chains on two heads of myosin dictates the regulation of myosin motor function. To evaluate this notion, we engineered and characterized smooth muscle heavy meromyosin (HMM), which is composed of one entire HMM heavy chain and one motor domain truncated heavy chain containing the S2 rod and regulatory light chain (RLC) binding site, as well as the bound RLC (SMDHMM). SMDHMM was inactive for both actin-translocating activity and actin-activated ATPase activity in the dephosphorylated state, demonstrating that the interaction between the two RLC domains on the two heads and/or a motor domain and a RLC domain in a distinct head is sufficient for the inhibition of smooth muscle myosin motor activity. When phosphorylated, SMDHMM was activated for both actin-translocating activity and actin-activated ATPase activity; however, these activities were lower than those of double-headed HMM, implying partial release of inhibition by phosphorylation in SMDHMM and/or cooperativity between the two heads of smooth muscle myosin. The present results indicate that the RLC domain is critical for phosphorylation-dependent regulation of smooth muscle myosin motor activity. On the other hand, similar to double-headed HMM, SMDHMM showed both "folded" and "extended" conformations, and the ratio of those conformations is dependent on ionic strength, suggesting that the RLC domain is sufficient to regulate the conformational transition in myosin.  相似文献   

2.
The effect of calcium ions on conformational changes of F-actin initiated by decoration of thin filaments with phosphorylated and dephosphorylated heavy meromyosin from smooth muscles was studied by fluorescence polarization spectroscopy. It is shown that heavy meromyosin with phosphorylated regulatory light chains (pHMM) promotes structural changes of F-actin which are typical for the "strong" binding of actin to the myosin heads. Heavy meromyosin with dephosphorylated regulatory light chains (dpHMM) causes conformational changes of F-actin which are typical for the "weak" binding of actin to the myosin heads. The presence of calcium enhances the pHMM effect and attenuates the dpHMM effect. We propose that a Ca2+-dependent mechanism exists in smooth muscles which modulates the regulation of actin--myosin interaction occurring via phosphorylation of myosin regulatory light chains.  相似文献   

3.
H Onishi  T Maita  G Matsuda  K Fujiwara 《Biochemistry》1992,31(4):1201-1210
The interaction between the heavy and the regulatory light chains within chicken gizzard myosin heads was investigated by using a zero-length chemical cross-linker, 1-ethyl-3-[3-(dimethylamino)-propyl]carbodiimide (EDC). The chicken gizzard subfragment 1 (S-1) used was treated with papain so that the heavy chain was partly cleaved into the NH2-terminal 72K and the COOH-terminal 24K fragments and the regulatory light chain into the 16K fragment. S-1 was reacted with EDC either alone or in the presence of ATP or F-actin. In all cases, the 16K fragment of the regulatory light chain formed a covalent cross-link with the 24K heavy chain fragment but not with the 72K fragment. The 38K cross-linked peptide, which was the product of cross-linking between the 16K light chain and the 24K heavy chain fragments, was isolated and further cleaved with cyanogen bromide and arginylendopeptidase. Smaller cross-linked peptides were purified by reverse-phase HPLC and then characterized by amino acid analysis and sequencing. The results indicated that cross-linking occurred between Lys-845 in the heavy chain and Asp-168, Asp-170, or Asp-171 in the regulatory light chain. The position of the cross-linked lysine was only three amino acid residues away from the invariant proline residue mapped as the S-1-rod hinge by McLachlan and Karn [McLachlan, A. D., & Karn, J. (1982) Nature (London) 299, 226-231]. We propose that the COOH-terminal region of the regulatory light chain is located in the neck region of myosin and that this region and the phosphorylation site of the regulatory light chain together may play a role in the phosphorylation-induced conformational change of gizzard myosin.  相似文献   

4.
We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors. In contrast, if phosphorylated, mutation of RLC residues smM129Q and smG130C in the F-G helix linker, which interact with the ELC (Ca(2+) binding in scallop), was sufficient to abolish motility and diminish ATPase activity, without altering other parameters. ELC mutations within this interacting ELC loop (smR20M and smK25A) were normal, but smM129Q/G130C-R20M or -K25A showed a partially recovered phenotype suggesting that interaction between the RLC and ELC is important. A molecular dynamics study suggested that breaking the RLC/ELC interface leads to increased flexibility at the interface and ELC-binding site of the HC. We hypothesize that this leads to hampered activation by allowing a pre-existing equilibrium between activated and inhibited structural distributions (Vileno, B., Chamoun, J., Liang, H., Brewer, P., Haldeman, B. D., Facemyer, K. C., Salzameda, B., Song, L., Li, H. C., Cremo, C. R., and Fajer, P. G. (2011) Broad disorder and the allosteric mechanism of myosin II regulation by phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 108, 8218-8223) to be biased strongly toward the inhibited distribution even when the RLC is phosphorylated. We propose that an important structural function of RLC phosphorylation is to promote or assist in the maintenance of an intact RLC/ELC interface. If the RLC/ELC interface is broken, the off-state structures are no longer destabilized by phosphorylation.  相似文献   

5.
Abalone myosin contains two kinds of light chain, regulatory light chain (LC2) and essential light chain (LC1) according to SDS-PAGE. Three distinct light chain bands were observed on polyacrylamide gel electrophoresis of purified abalone myosin in the presence of urea (urea-PAGE). The slower two components showed had mobility on SDS-PAGE and they also showed regulatory activity as the regulatory light chain. They were termed LC2-a and LC2-b in order of increasing mobility on urea-PAGE and isolated by DE-32 ion exchange column chromatography in the presence 8 M urea. The ratio of LC2-a and LC2-b in the central portion of adductor muscle of abalone (LC2-a: LC2-b = 7:3) was different from that (1:1) in the peripheral portion. These results suggest that the two light chains are isoforms of the regulatory light chain. The amino acid compositions of LC2-a and LC2-b were very similar to each other except for the Cys content. The UV absorption spectra were also quite similar, as were the UV difference absorption spectra induced by Ca2+. Phosphorylation was not detectable with the myosin light chain kinase of chicken gizzard. The Ca2+ concentration dependencies of Mg-ATPase activity of LC2-a or LC2-b hybridized abalone myosin (a-myosin, b-myosin) were similar to each other in the absence of rabbit F-actin, but differed in the presence of actin. The b-myosin had a higher maximum value of actomyosin ATPase activity and a lower apparent binding constant of actin and myosin than a-myosin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Calcium binding was studied with two regulatory light chains (RLC-a and RLC-b) of smooth muscle myosin of scallop. With the equilibrium dialysis method, the binding of 0.98 mol Ca2+ per mol of RLC-b was observed with a dissociation constant of 2.3 X 10(-5) M. Similar values for RLC-b, 1.9 X 10(-5) M, and RLC-a, 1.5 X 10(-5) M, were obtained by measuring the difference absorption spectrum induced by Ca2+. The difference molar absorption coefficient at 288 nm was 159 and 209 M-1 X cm-1 for RLC-a and RLC-b, respectively, while it was -34 M-1 X cm-1 for the regulatory light chain of striated muscle myosin of scallop (RLC-st). Proton NMR spectra of the three light chains were very similar to each other and were broader than those of other Ca2+ binding proteins, parvalbumin and calmodulin. The regulatory light chains may be more rigid than in these Ca2+ binding proteins. CD spectra were measured for the three light chains, and the estimated helix contents were 27, 29, and 24%, respectively, for RLC-a, RLC-b, and RLC-st. All these results in comparison with the primary structures led us to suppose that the polypeptide of regulatory light chains is folded in such a way that domain 4 becomes near to the calcium binding site of domain 1. The decrease in intact light chains on trypsin digestion was determined for the gel electrophoretic patterns. RLC-a was 6 times more susceptible to the tryptic digestion than RLC-b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
T J Eddinger  R A Murphy 《Biochemistry》1988,27(10):3807-3811
Smooth muscle myosin heavy chains [SM1, approximately 205 kilodaltons (kDa), and SM2, approximately 200 kDa] were separated on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Peptide maps of the two heavy chains showed unique patterns. Limited proteolytic cleavage of purified swine stomach myosin was performed by using a variety of proteases to produce the major myosin fragments which were resolved on SDS gels. A single band was obtained for heavy meromyosin in the soluble fraction following chymotrypsin digestion. However, a variable number of bands were observed for light meromyosin fragments in the insoluble fraction after chymotrypsin digestion. Peptide mapping indicated that the two bands observed after short digestion times with chymotrypsin had relative mobility and solubility properties consistent with approximately 100- and 95-kDa light meromyosin (LMM) fragments. These results indicate that the region of difference between SM1 and SM2 lies in the LMM fragment.  相似文献   

8.
9.
Smooth muscle myosin from scallop (Patinopecten yessoensis) adductor muscle contains two kinds of regulatory light chains (regulatory light chains a and b), and myosin having regulatory light chain a is suggested to be suitable for inducing "catch contraction" rather than myosin having regulatory light chain b (Kondo, S. & Morita, F. (1981) J. Biochem. 90, 673-681). The amino acid sequences of these two light chains were determined and compared. Regulatory light chain a consists of 161 amino acid residues, while regulatory light chain b consist of 156 amino acid residues. Amino acid substitutions and insertions were found only in the N-terminal regions of the sequences. The structural difference between the two light chains may contribute to the functional difference between myosins having regulatory light chains a and b.  相似文献   

10.
The actin-binding activity of myosin light chain kinase (MLCK) from smooth muscle was studied with special reference to the ATP-dependent interaction between actin and myosin. MLCK in the presence of calmodulin endowed sensitivity to Ca2+ on the movement of actin filaments on phosphorylated myosin from smooth muscle that was fixed on a coverslip. This regulatory effect was not attributable to the kinase activity of MLCK but could be explained by its actin-binding activity. The importance of the actin-binding activity was further substantiated by results of an experiment with Nitellopsis actin-cables in which MLCK regulated the interaction under conditions where MLCK was exclusively associated with the actin-cables.  相似文献   

11.
In this article we review the various amino acids present in vertebrate nonmuscle and smooth muscle myosin that can undergo phosphorylation. The sites for phosphorylation in the 20 kD myosin light chain include serine-19 and threonine-18 which are substrates for myosin light chain kinase and serine-1 and/or-2 and threonine-9 which are substrates for protein kinase C. The sites in vertebrate smooth muscle and nonmuscle myosin heavy chains that can be phosphorylated by protein kinase C and casein kinase II are also summarized.Original data indicating that treatment of human T-lymphocytes (Jurkat cell line) with phorbol 12-myristate 13-acetate results in phosphorylation of both the 20 kD myosin light chain as well as the 200 kD myosin heavy chain is presented. We identified the amino acids phosphorylated in the human T-lymphocytes myosin light chains as serine-1 or serine-2 and in the myosin heavy chains as serine-1917 by 1-dimensional isoelectric focusing of tryptic phosphopeptides. Untreated T-lymphocytes contain phosphate in the serine-19 residue of teh myosin light chain and in a residue tentatively identified as serine-1944 in the myosin heavy chain.Abbreviations MLC myosin light chain - MHC myosin heavy chain - Tris tris(hydroxymethyl)aminomethane - EGTA [ethylenebis(oxyethylenenitrilo)]tetraacetic acid - EDTA ethylenediaminetetraacetate - TPCK N-tosyl-L-phenylalanine chloromethyl ketone - PMA phorbol 12-myristate 13-acetate  相似文献   

12.
In the presence of ATP, unphosphorylated smooth muscle myosin can form a catalytically inactive monomer that sediments at 10 Svedbergs (10 S). The tail of 10 S bends into thirds and interacts with the regulatory domain. ADP-P(i) is "trapped" at the active site, and consequently the ATPase activity is extremely low. We are interested in the structural basis for maintenance of this off state. Our prior photocross-linking work with 10 S showed that tail residues 1554-1583 are proximal to position 108 in the C-terminal lobe of one of the two regulatory light chains ( Olney, J. J., Sellers, J. R., and Cremo, C. R. (1996) J. Biol. Chem. 271, 20375-20384 ). These data suggested that the tail interacts with only one of the two regulatory light chains. Here we present data, using a photocross-linker on position 59 on the N-terminal lobe of the regulatory light chain (RLC), demonstrating that both regulatory light chains of a single molecule can cross-link to the light meromyosin portion of the tail. Mass spectrometric data show four specific cross-linked regions spanning residues 1428-1571 in the light meromyosin portion of the tail, consistent with cross-linking two RLC to one light meromyosin. In addition, we find that position 59 can cross-link internally to residues 42-45 within the same RLC subunit. The internal cross-link only forms in 10 S and not in unphosphorylated heavy meromyosin (lacking the light meromyosin), suggesting a structural rearrangement within the RLC attributed to the interaction of the tail with the head.  相似文献   

13.
We tested the hypothesis that increases in force at a given cytosolic Ca(2+) concentration (i.e., Ca(2+) sensitization) produced by muscarinic stimulation of canine tracheal smooth muscle (CTSM) are produced in part by mechanisms independent of changes in regulatory myosin light chain (rMLC) phosphorylation. This was accomplished by comparing the relationship between rMLC phosphorylation and force in alpha-toxin-permeabilized CTSM in the absence and presence of acetylcholine (ACh). Forces were normalized to the contraction induced by 10 microM Ca(2+) in each strip, and rMLC phosphorylation is expressed as a percentage of total rMLC. ACh (100 microM) plus GTP (1 microM) significantly shifted the Ca(2+)-force relationship curve to the left (EC(50): 0.39 +/- 0.06 to 0.078 +/- 0.006 microM Ca(2+)) and significantly increased the maximum force (104.4 +/- 4.8 to 120.2 +/- 2.8%; n = 6 observations). The Ca(2+)-rMLC phosphorylation relationship curve was also shifted to the left (EC(50): 1.26 +/- 0.57 to 0.13 +/- 0.04 microM Ca(2+)) and upward (maximum rMLC phosphorylation: 70.9 +/- 7.9 to 88.5 +/- 5. 1%; n = 6 observations). The relationships between rMLC phosphorylation and force constructed from mean values at corresponding Ca(2+) concentrations were not different in the presence and absence of ACh. We find no evidence that muscarinic stimulation increases Ca(2+) sensitivity in CTSM by mechanisms other than increases in rMLC phosphorylation.  相似文献   

14.
15.
Myosin light chain kinase (MLCK) phosphorylates the light chain of smooth muscle myosin enabling its interaction with actin. This interaction initiates smooth muscle contraction. MLCK has another role that is not attributable to its phosphorylating activity, i.e., it inhibits the ATP-dependent movement of actin filaments on a glass surface coated with phosphorylated myosin. To analyze the inhibitory effect of MLCK, the catalytic domain of MLCK was obtained with or without the regulatory sequence adjacent to the C-terminal of the domain, and the inhibitory effect of the domain was examined by the movement of actin filaments. All the domains work so as to inhibit actin filament movement whether or not the regulatory sequence is included. When the domain includes the regulatory sequence, calmodulin in the presence of calcium abolishes the inhibition. Since the phosphorylation reaction is not involved in regulating the movement by MLCK, and a catalytic fragment that shows no kinase activity also inhibits movement, the kinase activity is not related to inhibition. Higher concentrations of MLCK inhibit the binding of actin filaments to myosin-coated surfaces as well as their movement. We discuss the dual roles of the domain, the phosphorylation of myosin that allows myosin to cross-bridge with actin and a novel function that breaks cross-bridging.  相似文献   

16.
The 20,000-Da light chains of gizzard smooth muscle myosin have been purified to homogeneity. Actomyosin, prepared by MgATP extraction of myofibrils, was denatured in 8 M urea, 1 M guanidine HCl, and 0.05% sodium dodecyl sulfate. Myosin heavy chains were precipitated with ethanol and the light chain enriched fraction was dialyzed and subjected to chromatography on DEAE-Sephacel. Fractions containing the 20,000-Da light chains were further purified by hydrophobic chromatography on phenyl-Sepharose. The 20,000-Da light chains eluted at low ionic strength from the phenyl-Sepharose column were judged to be greater than 95% pure by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contained only 0.04 mol of phosphate/mol of light chain. The yield of light chains was calculated to be 219 +/- 17 mg/kg of starting gizzard smooth muscle. This method may be useful for preparation of homogeneous 20,000-Da smooth muscle myosin light chains in the quantities necessary for study of contractile systems.  相似文献   

17.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

18.
The 20,000-dalton light chain of turkey gizzard myosin is phosphorylated at two sites. Dual phosphorylation is observed when both intact myosin and isolated light chains are used as substrates. Phosphorylation of the second site is not observed at higher ionic strength (e.g. 0.35 M KCl). The first phosphorylation site (serine 19) is phosphorylated preferentially to the second site. The latter is phosphorylated more slowly than the first site, and its phosphorylation requires relatively high concentrations of myosin light chain kinase. It is suggested that myosin light chain kinase catalyzes the phosphorylation of both sites on the light chain, and several reasons are cited that make it unlikely that a contaminant kinase is involved. The second phosphorylation site is a threonine residue. Based on the results of limited proteolysis of the light chain, it is concluded that the threonine residue is close to serine 19, and possible locations are threonines 9, 10, and 18. At all concentrations of MgCl2, phosphorylation of the second site markedly increases the actin-activated ATPase activity of myosin and accelerates the superprecipitation response of myosin plus actin.  相似文献   

19.
20.
Regulation of scallop myosin by mutant regulatory light chains   总被引:8,自引:0,他引:8  
Scallop adductor myosin is regulated by its subunits; the regulatory light chain (R-LC) and essential light chain (E-LC). Myosin light chains suppress muscle activity in the absence of calcium and are responsible for relaxation. The binding of Ca2+ to the myosin triggers contraction by releasing the inhibition imposed on myosin by the light chains. To map the functional domains of the R-LC, we have carried out mutagenesis followed by bacterial expression. Both wild-type and mutant proteins were hybridized to scallop myosin heavy chain/E-LC to map the regions of the light chain that are responsible for the binding to the myosin heavy chain/E-LC, for restoring the specific calcium-binding site, and controlling the myosin ATPase activity. The R-LC is expressed in Escherichia coli using the pKK223-3 (Pharmacia) expression vector and has been purified to greater than 90% purity. E. coli-expressed wild-type R-LC differs from the native R-LC by having the initiating methionine residue and an unblocked NH2 terminus. The wild-type R-LC restores Ca2+ binding and Ca2+ sensitivity when hybridized to scallop myosin. A point mutation of the sixth Ca2(+)-liganding position of domain I (Asp39----Ala39) results in a R-LC that binds more weakly to the heavy chain/E-LC and restores the specific Ca2(+)-binding site but not regulation of the actin-activated Mg2+ ATPase. A second mutation was produced by substituting the last 11 residues of the COOH terminus with 15 different residues. This mutant restores the specific Ca2(+)-binding site, but does not restore Ca2+ regulation to the actin-activated ATPase activity. Several other point mutations do not alter light chain function. The experiments directly establish that the divalent cation-binding site of domain I is functionally distinct from the specific Ca2(+)-binding site. The results indicate that an intact domain I and the COOH terminus are required to suppress the myosin ATPase activity. The fact that the domain I mutation and the COOH-terminal mutation disrupt regulation but do not affect Ca2(+)-binding indicates that these two aspects of regulation are separable and, therefore, the R-LC has distinct functional regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号