首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), which reversibly inhibits the adipose conversion of BALBc 3T3 preadipose cells, increases lactate production by these cells. The stimulation of lactate production requires 4–7 days for optimal effect. Once TPA is removed from the cultures, the rate of lactate production falls to control levels. The concentration dependence for the TPA-mediated stimulation of lactate production is similar to that for its inhibitory effect on adipose conversion. Exogenous lactate in the absence of TPA also inhibits adipose conversion. These results suggest that the ability of TPA to interfere with the normal pattern of glucose metabolism may be important in the inhibitory effect of TPA on triglyceride accumulation in these cells.  相似文献   

2.
The effect of the phorbol diester 12-0-tetradecanoylphorbol-13-acetate (TPA) on hexose transport in undifferentiated and differentiated BALB/c 3T3 preadipose cells was studied. Additon of TPA to undifferentiated or fully differentiated cultures resulted in an increased rate of both 2-deoxyglucose uptake and 3-0-methylglucose transport; the time course and maximal stimulation differed for each type of culture and for each hexose. In confluent, undifferentiated cells, half-maximal stimulation of 2-deoxyglucose uptake occurred at 3 nM TPA, while the half-maximal stimulation of 3–0-methylglucose occurred at 30 nM. Epidermal growth factor and fetal bovine serum increased 2-deoxyglucose uptake in undifferentiated cells, while insulin did not. Insulin did, however, stimulate 3–0-methylglucose transport in differentiated cells. From dose-response curves in differentiated cells, halfmaximally effective concentrations were 0.17 nM for insulin and 30 nM for TPA. At optimal concentrations and incubation times for each, TPA was significantly more effective than insulin in stimulating hexose transport in differentiated cells. It was also shown that insulin could further increase hexose transport in maximally stimulated TPA-treated cells. Cycloheximide inhibited by 75% the increase in hexose transport by TPA in differentiated cells, while having no effect on the response of these cells to insulin. In differentiated cells, chronic exposure to insulin abolished the ability of these cells to respond acutely to insulin addition but they could still respond to TPA. On the other hand, differentiated cells exposed continuously to TPA for 5 days retained the ability to activate 3–0-methylglucose transport after either TPA or insulin addition. These results demonstrate that TPA can stimulate hexose transport directly in both undifferentiated and differentiated 3T3 cells and suggest that TPA and insulin affect transport by different mechanisms.  相似文献   

3.
The adipose conversion of BALB/c 3T3 preadipose cells is inhibited by interferon; this inhibition is directly correlation with the interferon concentration. In cultures treated with low doses of interferon and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, another inhibitor of adipose conversion (Diamond et al., 1977), the two compounds act synergistically to block differentiation. Several lines of evidence suggest that the compounds differ in the mechanism by which they inhibit adipose conversion.  相似文献   

4.
The addition of platelet-derived growth factor (PDGF) to many types of cells causes a rapid decrease in high affinity binding of 125I-epidermal growth factor (EGF), a process which has been termed transmodulation. Treatment with the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) also results in the transmodulation of the EGF receptor in many cell types. PDGF can transmodulate EGF binding through a mechanism that is not dependent on protein kinase C activity. A recent report (Wattenberg, E. V., McNeil, P. L., Fujiki, H., and Rosner, M. R. (1989) J. Biol. Chem. 264, 213-219) described the requirement for a sodium ion influx in the down-modulation of the EGF receptor stimulated by a non-TPA-type tumor promoter, palytoxin, in Swiss 3T3 cells. We tested for a similar sodium requirement in Balb/c/3T3 and Swiss 3T3 cells stimulated by PDGF or TPA in Balb cells treated with TPA for prolonged periods to down-regulate protein kinase C activity. Our results clearly show that the PDGF- and TPA-stimulated transmodulation of the EGF receptor does not require external sodium nor is the process affected by amiloride. In each of these experiments, the loss of 125I-EGF binding occurred to a similar extent and at a similar rate in the presence or absence of sodium. Intracellular pH also did not appear to have a role in the response. The sodium ionophore, monensin, was previously shown to bring about the down-modulation of 125I-EGF binding in Swiss cells. However, our results indicate that monensin-induced transmodulation of the EGF receptor occurs with or without external sodium, suggesting that the loss of binding is not the result of a sodium ion influx. These findings demonstrate that an increase in intracellular sodium does not cause nor is it required for PDGF- or TPA-stimulated EGF receptor transmodulation.  相似文献   

5.
A rapid elevation of ribonucleotide reductase activity was observed with BALB/c 3T3 fibroblasts within 1/2 to 1 hour treatment with 0.1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA). This increase in activity was transient, and returned to about normal levels within 24 to 48 hours. Northern analysis of the two components of ribonucleotide reductase showed a slight transient elevation of M1 mRNA and a marked transient elevation of M2 mRNA after 1/2 hour TPA treatment. As a positive control, ornithine decarboxylase message levels were also observed to be transiently elevated following identical treatment with TPA. Western blot analysis with M1 and M2 specific monoclonal antibodies indicated that the increase in ribonucleotide reductase activity was primarily due to the transient elevation of the M2 but not the M1 protein during treatment with 0.1 microM TPA. This first demonstration that the tumor promotor, TPA, can cause rapid and transient alterations in ribonucleotide reductase suggests that the enzyme, particularly the M2 component, may play an important role in the critical events involved in the process of tumor promotion.  相似文献   

6.
7.
Mediated transport across the nuclear envelope was investigated in proliferating and growth-arrested (confluent or serum starved) BALB/c 3T3 cells by analyzing the nuclear uptake of nucleoplasmin-coated colloidal gold after injection into the cytoplasm. Compared with proliferating cells the nuclear uptake of large gold particles (110-270 A in diameter, including the protein coat) decreased 5.5-, 33-, and 78- fold, respectively, in 10-, 14-17-, and 21-d-old confluent cultures; however, the relative uptake of small particles (total diameter 50-80 A) did not decrease with increasing age of the cells. This finding suggests that essentially all pores remain functional in confluent populations, but that most pores lose their capacity to transport large particles. By injecting intermediate-sized gold particles, the functional diameters of the transport channels in the downgraded pores were estimated to be approximately to 130 and 110 A, in 14-17- and 21-d- old cultures, respectively. In proliferating cells, the transport channels have a functional diameter of approximately 230 A. The mean diameters of the pores (membrane-to-membrane distance) in proliferating and confluent cells (728 and 712 A, respectively) were significantly different at the 10%, but not the 5%, level. No differences in pore density (pore per unit length of membrane) were detected. Serum- deprived cells (7-8 d in 1% serum or 4 d in 0.5% serum) also showed a significant decrease in the nuclear uptake of large, but not small, gold particles. Thus, the permeability effects are not simply a function of high cell density but appear to be growth related. The possible functional significance of these findings is discussed.  相似文献   

8.
Ca2+ ionophore A23187 stimulated 2-deoxy-D-glucose (2DG) uptake in Swiss 3T3 mouse fibroblasts. Chelation of extracellular Ca2+ with ethylene-glycol-bis-(beta-aminoethylether) N,N'-tetraacetic acid (EGTA) inhibited the effect of A23187. Similarly, the stimulation of 2DG uptake by a tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was prevented by EGTA, whereas the epidermal growth factor (EGF)-stimulated 2DG uptake was not affected by EGTA alone, but in the presence of both EGTA and A23187 which effectively depleted cellular Ca2+ content, EGF could no longer stimulate 2DG uptake. These results suggest that Ca2+ regulates hexose transport system in Swiss 3T3 mouse fibroblasts, the activation of which by TPA and EGF differently depends on Ca2+.  相似文献   

9.
Stimulatory effects of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on human T lymphocytes have been investigated. TPA was found to stimulate highly purified T cells (obtained by a three-step isolation procedure involving plastic adherence, nylon wool passage and Ig-anti-Ig column passage) in the absence of accessory cells (stimulation index of 5 to 10), whereas phytohemaglutinin (PHA) and concanavalin A (Con A) did not. This response was, however, increased by the addition of autologous adherent cells. Addition of TPA, but not adherent cells, induced T-cell proliferation in response to the nonmitogenic lectin, wheat germ agglutinin (WGA), while both adherent cells and TPA restored T-cell proliferation to mitogenic lectins such as PHA and Con A. Furthermore, TPA greatly increased the mixed-lymphocyte response of purified T cells to otherwise nonstimulating allogeneic cells such as T lymphocytes or tumor cells from some patients with chronic lymphocytic leukemia. These results suggest that TPA can directly act on human T cells to render them reactive to a variety of stimuli.  相似文献   

10.
Barsoum and Varshavsky (Proc. Natl. Acad. Sci. U.S.A. 80:5330-5334, 1983) suggest that polypeptide mitogens and the mitogenic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulate gene amplification by related pathways. I demonstrated that TPA and the polypeptide mitogen fibroblast growth factor (FGF) both increase the frequency of cadmium-resistant variants of Swiss-Webster 3T3 cells. The molecular basis for this phenomenon is the amplification of the metallothionein gene(s). To further characterize the relationship between mitogenesis and gene amplification, I examined the ability of TPA and FGF to increase the frequency of cadmium-resistant colonies in the 3T3 variant cell line 3T3-TNR9. Unlike 3T3 cells, 3T3-TNR9 cells cannot be stimulated by TPA to divide (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-68, 1981). TPA does not induce an increase in cadmium-resistant colonies of the TPA-nonproliferative 3T3-TNR9, variant, in contrast to its efficacy on 3T3 cells. FGF, a potent mitogen for 3T3-TNR9 cells as well as 3T3 cells, is equally effective for 3T3-TNR9 and 3T3 cells in inducing cadmium-resistant colonies. These data suggest that the pathways of TPA-induced gene amplification and TPA-stimulated mitogenesis share a common step(s). TPA caused transient inhibition of DNA synthesis in both dividing 3T3 and 3T3-TNR9 cells, suggesting that this latter response to TPA is not sufficient to enhance gene amplification.  相似文献   

11.
Myeloperoxidase synthesis during induction of differentiation of human promyelocytic leukemia HL-60 cells by 12-O-tetradecanoylphorbol-13-acetate (TPA) was studied. Differentiation was characterized by morphological changes, arrest of cell proliferation, development of cell adherence, and increased secretion of lysozyme. The cellular myeloperoxidase activity decreased early during induction of differentiation by TPA. Pulse-labeling experiments indicated that the rate of myeloperoxidase synthesis decreased to an undetectable level in cells exposed to TPA for 22 h. The relative amounts of myeloperoxidase mRNA in TPA-treated and untreated cells were determined by measuring translatable mRNA activity in a reticulocyte lysate system. Reduction in the myeloperoxidase mRNA level was observed as early as after 3 h treatment with TPA, and no myeloperoxidase mRNA was detected after 24 h. Time course experiments indicated that the time required for 50% reduction of myeloperoxidase mRNA in TPA-treated cells was approximately 5 h. These results suggest that TPA induces decrease of myeloperoxidase activity in HL-60 cells at a pretranslational level.  相似文献   

12.
The effect of a tumor-promoting phorbol ester on the binding of fibronectin-coated beads to 3T3-L1 cells was studied to clarify the relationship between the binding of fibronectin to the cells, cell adhesion, and the organization of actin filaments. Interference-reflection microscopy revealed focal contacts of 3T3-L1 cells with the substratum. Stress fibers observed after rhodamine-phalloidin staining were well-developed in the cells. Treatment of the cells for 20 min with 12-O-tetradecanoylphorbol-13-acetate (TPA), but not with phorbol, disrupted focal contacts and caused a reorganization of stress fibers to generate actin ribbons. Treatment of the cells with TPA enhanced the binding of beads coated with human plasma fibronectin to the cells, as observed after incubation for 6 h with the beads. The TPA-induced increase in the percentage of cells with bound beads was dependent on the duration of treatment with TPA and on the concentration of TPA. Treatment of the cells with TPA also enhanced proliferation of cells in a dose-dependent manner. The enhancement of binding of the beads by TPA was suppressed by addition of an adhesion-inhibitory peptide (Gly-Arg-Gly-Asp-Ser-Pro). Treatment with TPA did not enhance nonspecific binding of beads coated with heat-denatured bovine serum albumin. Furthermore, treatment of the cells with phorbol did not enhance the binding of beads coated with fibronectin. These results suggest that TPA specifically enhances the binding of fibronectin-coated beads to 3T3-L1 cells, and that TPA-induced binding of the beads may be related to disruption of focal contacts and reorganization of actin filaments.  相似文献   

13.
Mouse epidermal cells can be subcultured at 31°C onto an irradiated BALB/c 3T3 clone A31 feeder layer. A31 cells (supposedly derived from embryonic fibroblasts) were found to be specifically required for the optimal production of keratinizing epidermal colonies in secondary culture. This effect was not transmitted through the medium nor by the culture surface, since A31 cells plated on one end of a flask did not stimulate epidermal cell proliferation at the other end, even if the other end had previously held A31 cells. Epidermal cell contact with metabolizing A31 cells was probably necessary for the effect; fixed or freeze-thawed A31 cells were ineffective. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate, recently shown to interfere with contact-mediated transfer of label (metabolic cooperation) between Swiss 3T3 cells and cells of an established epidermal line in vitro, also blocked epidermal colony formation. The A31-epidermal cell interaction is apparently not a typical mesenchymal-epithelial interaction, since the basement membrane would prevent this contact in intact skin.  相似文献   

14.
The ability of the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to stimulate the growth of quiescent BALB/c 3T3 cell lines lacking Na+K+Cl- cotransport activity was tested. We have previously isolated and characterized two mutant cell lines defective in this important ion transport system by mutagenesis and selection in medium containing low K+. To test our hypothesis that loss of this transport activity might abrogate the proliferative response to TPA, two kinds of mitogenesis assays were performed. First, the effect of 0.16 microM TPA on the saturation density of parental vs. mutant cell lines was determined. TPA caused a small but reproducible 30-35% increase in the saturation density of mutant cells compared to the 100-120% increase seen in parental cell lines. Second, the effect of TPA on the incorporation of 3H-thymidine into cell nuclei (labeling index) was measured. While some variability from experiment to experiment in the extent and time course of the response of mutant cells was noted, TPA either had no effect or only a small effect on the labeling index when compared to the response of parental cells. When a range of concentrations of TPA (0.016-1.6 microM) was tested, neither cell line exhibited a large response to any concentration. These results suggest that loss of Na+K+Cl- cotransport activity decreases the response of these cells to the mitogenic action of TPA.  相似文献   

15.
Summary 12-O-tetradecanoylphorbol-13-acetate (TPA) is known to affect the proliferation and/or differentiation of several types of cells. We injected TPA directly into the lumen of rat bladder to determine, using scanning and transmission electron microscopy, its effects on the bladder epithelium in vivo. At 1 h after TPA injection (1g/ml), the superficial cells of the epithelium had changed their morphology, and large spherical vacuoles occupied their cytoplasm. In some areas, the underlying intermediate cells were exposed by the desquamation of the superficial cells. During the next few hours, TPA was excreted from the bladder lumen by voluntary micturition, but the desquamation of the superficial cells proceeded further. All the superficial cells were lost from the luminal surface by 24 h after TPA injection. The changes noted were specific for the superficial cells and were not observed in the intermediate or basal cells. After 24h, part of the epithelium had a three-layer structure, indicating that regeneration was taking place. These results demonstrate that TPA selectively affects and desquamates superficial cells in a short period of time. This experimental system may be useful for studying in vivo cell proliferation and/or differentiation.  相似文献   

16.
17.
18.
12-O-tetradecanoylphorbol-13-acetate (TPA), a potent tumor promoter, acts similarly to growth factors by selectively increasing the rate of production of the secreted proteins, mitogen regulated protein (MRP) and major excreted protein (MEP) by murine 3T3 cells. MRP, a 34 kilodalton (kDa) glycoprotein, is a member of the prolactin-growth hormone family of proteins. MEP, a 39 kDa glycoprotein, is a lysosomal thiol protease that is also secreted. The aim of our investigation was to determine the relation between increases in MRP and MEP production and the initiation of DNA synthesis in response to mitogens. The TNR-9 cell line is a variant of 3T3 cells in which growth factors, but not TPA and teleocidin, stimulate DNA synthesis and cell division. Using [35S]methionine to metabolically label proteins and SDS polyacrylamide gel electrophoresis to resolve the proteins, we found that growing cultures of 3T3 and TNR-9 cells responded equally well to TPA and teleocidin with increased rates of production of MRP and MEP. By contrast, the responses of quiescent TNR-9 cells to these tumor promoters in the increased production of MRP and MEP was greatly diminished compared with quiescent 3T3 cells. The changes in production of MRP in response to tumor promoters in quiescent and growing cells paralleled similar changes in the level of MRP mRNA. In summary, the ability to TPA and teleocidin to increase the rate of production of MRP and MEP correlated with the ability of these tumor promoters to stimulate DNA synthesis in quiescent 3T3 and TNR-9 cells. Evidently the biochemical condition that distinguishes TNR-9 from 3T3 cells and that limits the ability of tumor promoters to stimulate the production of MEP and MRP, and perhaps also DNA synthesis in TNR-9 cells occurs only when the cells are quiescent.  相似文献   

19.
L T Wen  A Tanaka    M Nonoyama 《Journal of virology》1989,63(8):3315-3322
Binding of the Epstein-Barr virus (EBV) nuclear antigen (EBNA-1) to BamHI-C DNA was studied by affinity column chromatography followed by immunoblotting with human serum specific for EBNA-1. Two species of EBNA-1 (68 and 70 kilodaltons) were identified in nuclear extracts of the EBV-positive Burkitt's lymphoma cell line Raji and not in nuclear extracts of the EBV-negative Burkitt's lymphoma cell line BJAB. Both EBNA-1s bound specifically to the region required for EBV plasmid DNA maintenance (oriP) located in the BamHI-C fragment. Upon treatment with 12-O-tetradecanoylphorbol-13-acetate, which activates latent EBV genome in Raji cells, the 68-kilodalton EBNA-1 was uncoupled from binding to EBV oriP. Nuclear extracts from 12-O-tetradecanoylphorbol-13-acetate-treated BJAB cells also uncoupled the binding of both EBNA-1s to oriP. DNA-cellulose column chromatography identified two protein species which competed for and uncoupled the binding of EBNA-1 to oriP. The two cellular competitors we called anti-EBNA-1 proteins had molecular masses of 60 and 40 kilodaltons, respectively. They were not found in nuclear extracts of BJAB cells not activated by 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

20.
H Rubin  B M Chu 《In vitro》1984,20(7):585-596
Clones were derived in culture from a tumor initiated by spontaneously transformed 3T3 cells and tested for their colony-forming efficiency in agar (CFEag). Incubation of petri dish cultures was done in subsaturation humidity to minimize mold contamination. There was great variation in CFEag between clones but also, under certain conditions, within clones. The most prominent condition that generated phenotypic diversity in CFEag was partial evaporation of the medium, which may occur during the protracted development of a mass population from a single cell. Evaporation was disproportionately great in 35-mm dishes and peripheral wells of multiwell plates. If the supraphysiological solute concentration resulting from evaporation was greater than 133% of normal, there was progressive suppression of cell growth in the succeeding transfer in agar or on plastic, even if isotonic medium was substituted 1 d before transfer. The effect of supraphysiological concentrations of all the solutes of the medium could be reproduced by simply increasing the NaCl concentration. Damaged cells were restored to their full growth potential after 3 d in isotonic medium. When nontransformed cells were chronically exposed to increased salt, irreversible increases in 2-deoxyglucose uptake were produced. With continued exposure of these cells to high salt, they became morphologically transformed, produced colonies in agar with high efficiency, and formed sarcomas when inoculated into nude mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号