首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.  相似文献   

2.
1. The neuroprotective effect of Ginkgo biloba extract (EGb 761) against transient forebrain ischemia following 7 days of reperfusion was studied in male Wistar rats after four-vessel occlusion for 20 min.2. NeuN, a neuronal specific nuclear protein was used for immunohistochemical detection of surviving pyramidal neurons in the hippocampus, as well as counterstaining with hematoxylin in the same sections for detection of neurons that underwent delayed neuronal death and for glial nuclei staining. GFAP immunohistochemistry was used for detection of astrocytes in the studied area of CA1 region.3. In the group of rats pretreated 7 days with Ginkgo biloba extract (EGb 761), following 20 min of ischemia and 7 days of reperfusion without EGb 761, increased number of NeuN immunoreactive cells were counted in the most vulnerable CA1 pyramidal layer of hippocampus. On the other hand, the group of rats with 7 days of EGb 761 pretreatment following 20 min of ischemia and 7 days of reperfusion with EGb 761 showed decreased number of surviving NeuN immunoreactive CA1 pyramidal cells in comparison with the first above-mentioned experimental group.4. Increased number of reactive astrocytes immunolabeled for GFAP (Glial fibrilary acidic protein) was observed in both experimental groups in the stratum oriens and stratum lacunosum and moleculare.5. Twenty minutes of ischemia is lethal for most population of CA1 pyramidal cell layer. Our results showed that prophylactic oral administration of Ginkgo biloba extract (EGb 761) in the dose 40 mg/kg/day during the 7 days protects the most vulnerable CA1 pyramidal cells against 20 min of ischemia.  相似文献   

3.
4.
Stroke is the fourth leading cause of death and a major cause of disability in stroke survivors. Studies have underlined the importance of repair mechanisms in the recovery phase of stroke. Neurogenesis in response to brain injury is one of the regeneration processes that, if enhanced, may offer better stroke treatment alternatives. Previously, we have demonstrated antioxidant, neuritogenic, and angiogenic properties of Ginkgo biloba/EGb 761® (EGb 761) in different mouse models of stroke. In the present study, we were interested to study whether EGb 761 could protect mice from permanent middle cerebral artery occlusion (pMCAO) and enhance neurogenesis. EGb 761 pre- and posttreated mice had lower infarct volume and improved motor skills with enhanced proliferation of neuronal stem/progenitor cells (NSPCs) at 24 h and 7 days posttreatment. Netrin-1 and its receptors (DCC and UNC5B) that mediate axonal attraction and repulsion were observed to be overexpressed in NSPCs only, implying that netrin-1 and its receptors might have partly played a role in enhanced neurogenesis. Interestingly, in heme oxygenase 1 knockout mice (HO1?/?), neurogenesis was significantly lower than in vehicle-treated mice at day 8. Furthermore, EGb 761 posttreated mice also demonstrated heme oxygenase 1 (HO1)-activated pathway of phosphorylated glycogen synthase kinase 3 α/β (p-GSK-3 α/β), collapsin response mediator protein 2 (CRMP-2), semaphorin3A (SEMA3A), and Wnt, suggesting probable signaling pathways involved in proliferation, differentiation, and migration of NSPCs. Together, these results propose that EGb 761 not only has antioxidant, neuritogenic, and angiogenic properties, but can also augment the repair and regeneration mechanisms following stroke.  相似文献   

5.
In this study, the effect of bilobalide, a purified terpene lactone component of the Ginkgo biloba extract (EGb 761), and EGb 761 against ischemic injury and against glutamate-induced excitotoxic neuronal death was compared. In the case of ischemic injury, neuronal loss and the levels of mitochondrial DNA (mtDNA)-encoded cytochrome oxidase (COX) subunit III mRNA in the hippocampal regions of gerbils was measured. A significant increase in neuronal death and a significant decrease in COX III mRNA were observed in the hippocampal CA1 neurons at 7-days of reperfusion after 5 min of transient global forebrain ischemia. Oral administration of EGb 761 at 25, 50 and 100 mg/kg/day and bilobalide at 3 and 6 mg/kg/day for 7 days before ischemia progressively protected hippocampal CA1 neurons against ischemia-induced neuronal death and reductions in COX III mRNA. In rat cerebellar neuronal cultures, addition of bilobalide or EGb 761 protected in a dose-dependent manner against glutamate-induced excitotoxic neuronal death [effective concentration (EC50) = 5 microg/ml (12 microM) forbilobalide and 100 microg/ml for EGb 761]. These results suggest thatboth EGb 761 and bilobalide protect against ischemia-induced neuronal death in vivo and glutamate-induced neuronal death in vitro by synergistic mechanisms involving anti-excitotoxicity, inhibition of free radical generation, scavenging of reactive oxygen species, and regulation of mitochondrial gene expression.  相似文献   

6.
EGb 761 is a neuroprotective agent against beta-amyloid toxicity.   总被引:7,自引:0,他引:7  
Beta-amyloid (Abeta) deposition likely plays a causal role in the lesions that occur in Alzheimer's disease (AD). The Ginkgo biloba extract EGb 761 is widely prescribed in the treatment of cognitive deficits that are associated with normal and pathological brain aging such as AD. We have investigated here the potential effectiveness of EGb 761 against cell death produced by Abeta fragments on primary cultures of hippocampal cells, these cells being severely damaged in AD. A co-treatment with EGb 761 protected cells against toxicity induced by Abeta fragments in a concentration dependent manner. The effect of EGb 761 was even significant if added up to 8 hr to cells and was shared by its flavonoid fraction CP 205, whereas the terpenes bilobalide and ginkgolide B were ineffective. EGb 761 also displayed protective effects against toxicity produced by either H2O2 or nitric oxide, two neurotoxic agents that possibly mediate Abeta toxicity. Moreover, EGb 761, and to a lesser extent CP 205, completely blocked Abeta-induced events, such as reactive oxygen species accumulation and apoptosis. Taken together, these results and those obtained by other groups highlight the neuroprotective abilities of EGb 761 against dysfunction and death of neurons caused by Abeta deposits.  相似文献   

7.
Zhao Z  Liu N  Huang J  Lu PH  Xu XM 《Journal of neurochemistry》2011,116(6):1057-1065
Ginkgo biloba extract (EGb761) has been shown to be neuroprotective; however, the mechanism by which EGb761 mediates neuroprotection remains unclear. We hypothesized that the neuroprotective effect of EGb761 is mediated by inhibition of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that is known to play a key role in mediating secondary pathogenesis after acute spinal cord injury (SCI). To determine whether EGb761 neuroprotection involves the cPLA(2) pathway, we first investigated the effect of glutamate and hydrogen peroxide on cPLA(2) activation. Results showed that both insults induced an increase in the expression of phosphorylated cPLA(2) (p-cPLA(2)), a marker of cPLA(2) activation, and neuronal death in vitro. Such effects were significantly reversed by EGb761 administration. Additionally, EGb761 significantly decreased prostaglandin E(2) (PGE(2)) release, a downstream metabolite of cPLA(2). Moreover, inhibition of cPLA(2) activity with arachidonyl trifluromethyl ketone improved neuroprotection against glutamate and hydrogen peroxide-induced neuronal death, and reversed Bcl-2/Bax ratio; notably, EGb761 produced greater effects than arachidonyl trifluromethyl ketone. Finally, we showed that the extracellular signal-regulated kinase 1/2 signaling pathway is involved in EGb761's modulation of cPLA(2) phosphorylation. These results collectively suggest that the protective effect of EGb761 is mediated, at least in part, through inhibition of cPLA(2) activation, and that the extracellular signal-regulated kinase 1/2 signaling pathway may play an important role in mediating the EGb761's effect.  相似文献   

8.
Ischemic postconditioning is a very effective way how to prevent delayed neuronal death. Effect of Ginkgo biloba extract (EGb 761; 40 mg/kg) posttreatment was studied on the rat model of transient forebrain ischemia and ischemia/postconditioning. Global ischemia was produced by four-vessel occlusion in Wistar male rats. Two experimental protocols were used: (a) 10 min of ischemia/7 days of reperfusion with or without EGb 761 treatment or (b) 10 min of ischemia/2 days of reperfusion/5 min of ischemia (postconditioning), following 5 days of reperfusion. EGb 761 was applied as follows: 30 min before 10 min of ischemia then 5 h, 1 and 2 days after 10 min of ischemia. Fluoro Jade B, marker for neuronal degeneration, was used for quantitative analysis of the most vulnerable hippocampal CA1 neurons. Cognitive and memory functions were tested by Morris water maze, as well. Administration of EGb 761 30 min before 10 min of ischemia or 5 h after ischemia has rather no protective effect on neuronal survival in CA1 region. Ten minutes of ischemia following ischemic postconditioning after 2 days of reperfusion trigger a significant neuroprotection of CA1 neurons, but it is abolished by EGb 761 posttreatment. Ischemia/postconditioning group showed a significant improvement of learning and memory on the seventh day of reperfusion. Protection of the most vulnerable CA1 neurons after ischemia/postconditioning is abolished by exogenous antioxidant treatment used in different time intervals after initial ischemia. Moreover, combination of EGb 761 administration with repeated stress (5 min ischemia used as postconditioning) causes cumulative injury of CA1 neurons.  相似文献   

9.
Ginkgo biloba extract (EGb 761) exerts a neuroprotective effect against ischemic brain injury through an anti-apoptotic mechanism. Parvalbumin is a calcium buffering protein that plays an important role in modulating intracellular calcium concentration and regulating apoptotic cell death. The aim of this study was to investigate whether EGb 761 affects parvalbumin expression in cerebral ischemic injury. Adult male Sprague-Dawley rats were treated with vehicle or EGb 761 (100 mg/kg) prior to middle cerebral artery occlusion (MCAO) and cerebral cortex tissues were collected 24 h after MCAO. A proteomic approach revealed a reduction in parvalbumin expression in the vehicle-treated animals, whereas EGb 761 pretreatment attenuates the ischemic injury-induced decrease in parvalbumin expression. RT-PCR and Western blot analyses clearly confirmed the fact that EGb 761 prevents the injury-induced decrease in parvalbumin. Moreover, the results of immunohistochemical staining showed that the number of parvalbumin-positive cells was lower in vehicle-treated animals than in sham-operated animals, and EGb 761 averted this decrease. Thus, these results suggest that the maintenance of parvalbumin expression is associated with the neuroprotective function of EGb 761 against neuronal damage induced by ischemia.  相似文献   

10.
Luo Y 《Life sciences》2006,78(18):2066-2072
Alzheimer's disease (AD) is affecting larger and larger proportions of our population as lifespan increases. Thus, the means to prevent or reduce the rate of this disorder is a high priority for medical research. A standardized extract of Ginkgo biloba leaves EGb 761 is a popular dietary supplement taken by the general public to enhance mental focus and by the elderly to delay onset of age-related loss of cognitive function. EGb 761 has been used for treatment of certain cerebral dysfunctions and dementias associated with aging and AD. Substantial evidence indicates that EGb 761 has neuroprotective effects. But, mechanisms of action of the components of the extract are, unfortunately, poorly understood. Research in my laboratory focuses on understanding mechanisms of action of the components of the herbal extract EGb 761 in protection against Alzheimer's disease. We have demonstrated that EGb 761 inhibited amyloid beta aggregation in vitro and attenuates reactive oxidative species (ROS) in a model organism - the round worm Caenorhabditis elegans. Furthermore, EGb 761 eased its toxicity in the transgenic C. elegans. We also found that only a certain size of the amyloid beta aggregates is toxic to the worms. These findings suggest that EGb 761 has a clear therapeutic potential for prevention and/or treatment of AD. A better understanding of the mechanisms of neuroprotection by EGb 761 will be important for designing therapeutic strategies, for basic understanding of the underlying neurodegenerative processes, and for a better understanding of the effectiveness and complexity of this herbal medicine.  相似文献   

11.
Ginkgo biloba extract (EGb 761) has beneficial effects on cognitive functions in aging patients, and on various pathologies, including cardiovascular diseases. Although the extract is known to have antioxidant properties and improve membrane fluidity, the cellular mechanisms underlying these effects have not been determined. Here, we examined the in vivo effects of EGb 761 on circulating and cellular lipids. EGb 761 treatment induced significant increases in the levels of circulating polyunsaturated fatty acids (PUFAs), and a decrease in the saturation index SI (saturated/polyunsaturated species). Plasma triglycerides and cholesterol were not affected, while phospholipids were slightly increased at the higher dose of EGb 761. EGb 761 treatment also induced a significant increase in the levels of PUFAs in erythrocyte membranes, especially for the eicosapentaenoic acid (EPA omega 3), and a decrease in the saturation index. Moreover, the response of erythrocytes to oxidative stress was improved in EGb 761-treated animals (H(2)O(2)-induced cell lysis decreased by 50%). Considering that PUFAs are known to improve membrane fluidity and response to oxidative damage, and are precursors of signaling molecules such as prostaglandins, the effects of EGb 761 on circulating and cellular PUFAs may explain some of the pharmacological properties of Ginkgo biloba.  相似文献   

12.
Vitiligo is a common skin depigmenting disorder characterized by the loss of functional melanocytes. Its pathogenesis is complicated and oxidative stress plays a critical role in the development of vitiligo. Thus, antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of depigmentation. Ginkgo biloba extract EGb761 has been confirmed to have protective effects on neurons against oxidative stress. Notably, several clinical trials have shown that patients with stable vitiligo achieved repigmentation after taking EGb761. However, the exact mechanism underlying the protective effects of EGb761 on melanocytes against oxidative stress has not been fully elucidated. In the present study, we found that EGb761 effectively protected melanocytes against oxidative stress‐induced apoptosis and alleviated the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation by enhancing the activity of antioxidative enzymes. Furthermore, the antioxidative effect of EGb761 was achieved by activating Nrf2 and its downstream antioxidative genes. In addition, interfering Nrf2 with siRNA abolished the protective effects of EGb761 on melanocytes against oxidative damage. In conclusion, our study proves that EGb761 could protect melanocytes from H2O2‐induced oxidative stress by activating Nrf2. Therefore, EGb761 is supposed to be a potential therapeutic agent for vitiligo.  相似文献   

13.
Prostaglandins (PGs) originate from the degradation of membranar arachidonic acid by cyclooxygenases (COX-1 and COX-2). The prostaglandin actions in the nervous system are multiple and have been suggested to play a significant role in neurodegenerative disorders. Some PGs have been reported to be toxic and, interestingly, the cyclopentenone PGs have been reported to be cytoprotective at low concentration and could play a significant role in neuronal plasticity. They have been shown to be protective against oxidative stress injury; however, the cellular mechanisms of protection afforded by these PGs are still unclear. It is postulated that the cascade leading to neuronal cell death in acute and chronic neurodegenerative conditions, such as cerebral ischemia and Alzheimer's disease, would be mediated by free radical damage. We tested the hypothesis that the neuroprotective action of cyclopentanone could be caused partially by an induction of heme oxygenase 1 (HO-1). We and others have previously reported that modulation of HO total activity may well have direct physiological implications in stroke and in Alzheimer's disease. HO acts as an antioxidant enzyme by degrading heme into iron, carbon monoxide, and biliverdin that is rapidly converted into bilirubin. Using mouse primary neuronal cultures, we demonstrated that PGs of the J series induce HO-1 in a dose-dependent manner (0, 0.5, 5, 10, 20, and 50 micro g/ml) and that PGJ(2) and dPGJ(2) were more potent than PGA(2), dPGA(2), PGD(2), and PGE(2). No significant effects were observed for HO-2 and actin expression. In regard to HO-3 expression found in rat, with its protein deducted sequence highly homologous to HO-2, no detection was observed in HO-2(-/-) mice, suggesting that HO-3 protein would not be present in mouse brain. We are proposing that several of the protective effects of PGJ(2) could be mediated through beneficial actions of heme degradation and its metabolites. The design of new mimetics based on the cyclopentenone structure could be very useful as neuroprotective agents and be tested in animal models of stroke and Alzheimer's disease.  相似文献   

14.
Standardized Ginkgo biloba extract EGb761 is known to have multivalent properties such as anti-oxidation and anti-apoptosis. In this study, we determined in rat pheochromocytoma (PC12) cells effects of EGb761 treatment on oxidative damage under three different conditions of serum supply: normal growth medium (NGM), serum deprivation (SE) and serum deprivation followed by re-supply (SERS). It was found that, under the condition of serum deprivation, oxidative damage induced less cell death than the condition of serum supply. This appears to be related to inhibition of mitochondrial metabolism. Moreover, after serum deprivation, serum re-supply exacerbated cell necrosis, possibly through enhancement of oxidative damage. EGb761 could attenuate oxidative damage under the condition of serum supply whereas no protective effect on serum-depleted cells was observed. These results suggest that, there is a synergistic effect between trophic factors and EGb761. EGb761 treatment may protect cells from possible oxidative damage induced by the trophic factors. On the other hand, trophic factors appear to strengthen the protective effect of EGb761. To fully understand the synergistic interaction between antioxidants and trophic factors will help to sort out rational use of drugs in clinic practice.  相似文献   

15.
16.
目的 研究银杏叶提取物(EGb761)对H2O2所致星形胶质细胞氧化损伤的保护作用。方法 用不同浓度的EGb761预处理细胞,再加入H2O2,通过噻唑蓝(MTT)实验、线粒体跨膜电位(△ψm)及细胞色素C释放实验、DNA损伤实验及半胱氨酰天冬氨酸特异性蛋白酶-3(Caspase-3)活性测定,观察EGb761对细胞存活率、线粒体膜通透性、DNA氧化损伤及Caspase-3活性的影响。结果 EGb761能明显降低Hz02对星形胶质细胞的氧化损伤,提高细胞的存活率;维持线粒体膜的完整性,抑制跨膜电位的耗散和细胞色素C的释放;抑制Caspase-3的活化和DNA的降解。结论 EGb761具有清除活性氧,减轻H2O2所致星形胶质细胞的氧化损伤,对星形胶质细胞有保护作用。  相似文献   

17.
18.
The objective of the present study was to characterize the action of Ginkgo biloba extract (EGb761) and its sub-fractions on glutathione homeostasis in a human keratinocyte cell culture model. Cells were incubated with EGb761, its purified flavonoid (quercetin, kaempferol, rutin) or terpenoids (gingkolides A, B, C, J, bilobalide) constituents or the vehicle for up to 72 hours. Incubation of keratinocytes with the purified flavonoids or terpenoids did not affect cellular GSH levels. However, EGb761 treatment (up to 200 microg/ml) resulted in a dose-dependent increase of cellular GSH. Western blot analysis of extracts from cells treated with EGb761 revealed increased levels of the catalytic subunit of gamma-glutamylcysteinyl synthetase (gamma-GCS), the rate-limiting enzyme in GSH synthesis. The abundance of mRNA for the catalytic subunit (assayed by RT-PCR) was also increased by the treatment with EGb761. Increased levels of cellular GSH by EGb761 were also observed in other cell lines including those from human bladder and liver as well as in murine macrophages indicating that the induction of gamma-GCS mRNA, protein and GSH may be an ubiquitous effect of EGb761 in mammalian cells.  相似文献   

19.
EGb 761, a standardized extract of Ginkgo biloba leaves, has been used in clinical trials for its beneficial effects on brain functions. In mammals, EGb 761 has been shown to enhance cognition, stress resistance, and longevity, but its molecular and cellular mechanisms are not known. In the present investigation, we used the model organism Caenorhabditis elegans to evaluate pharmacological effects of EGb 761 on aging. We tested the theory that EGb 761 augments the natural antioxidant system of C elegans, and thus increases stress resistance and longevity. We found that treatment of the wild-type worms with EGb 761 extended their median life span by 8%. Amongst several purified components of EGb 761, the flavonoid tamarixetin showed the most dramatic effect: it extended the median life span by 25%. Furthermore, EGb 761 increased the wild type's resistance to acute oxidative and thermal stress by 33% and 25%, respectively. Treatment of the prematurely aging mutant worms mev-1 with EGb 761 increased their resistance to acute oxidative and thermal stress by 33% and 11%, respectively. It appears that oxidative stress, a major determinant of life span, as well as other types of stress, can be successfully counteracted by the Ginlkgo biloba extract EGb 761.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号