首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive, simple spectrofluorometric technique for determination of tryptophan inamounts as small as 10 pmol is described. It is based on tryptophanase hydrolysis of tryptophan and spectrofluorometric analysis of the resulting indole. The relationship between released indole and fluorescence is linear over three orders of magnitude. The method is free from interference by other amino acids, polar indole derivatives, and a number of other compounds found in cell extracts or used in bacterial growth media. The method is rapid, reproducible, and accurate. A simple method for extraction and measurement of endogenous free tryptophan from bacterial cells is also described.  相似文献   

2.
The fluorescence of tryptophan residues of gramicidin A (gA), bound to phosphatidylcholine liposomes contains valuable information about local changes in the environment of the molecule induced by gamma radiation. With this work, we aim to demonstrate that the gamma radiation effect on the peptide involves the action of free radicals, derived from water radiolysis and the process of lipid peroxidation. Basically, the methodology consists of the analysis of UV and fluorescence emission spectra of the peptide liposome complexes under control conditions and upon gamma irradiation. Free radical production was impaired by the removal of molecular oxygen or the presence of ethanol in the liposome suspension. The intensity of the tryptophan fluorescence was recorded as a function of the gamma radiation dose in the range of 0-250 Gy and the data were fitted with a single decay exponential function containing an additional constant term (named residual fluorescence). The correlation between the decrease in tryptophan fluorescence emission (D(c) = 80 +/- 10 Gy) and increase in gamma radiation dose indicates the partial damage of the tryptophan side chains of gA. O(2) removal or ethanol addition partially reduced the decay of the tryptophan fluorescence emission involving an indirect action of gamma radiation via a water radiolysis mechanism. The residual fluorescence emission (A(0)) increases in O(2)-free buffer (98 +/- 13) and in 10% ethanol-containing buffer (74 +/- 34) compared to control conditions (23 +/- 5). Varying the dose rate between 1-10 Gy/min at a constant dose of 50 Gy, an inverse dose-rate effect was observed. Thus, our study provides evidence for the lipid peroxidation effect on the tryptophan fluorescence. In conclusion, this article sustains the hypothesis of the connection between the lipid peroxidation and structural changes of membrane proteins induced by gamma radiation. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The presence of tryptophan residues as intrinsic fluorophores in most proteins makes them an obvious choice for fluorescence spectroscopic analyses of such proteins. Membrane proteins have been reported to have a significantly higher tryptophan content than soluble proteins. The role of tryptophan residues in the structure and function of membrane proteins has attracted a lot of attention. Tryptophan residues in membrane proteins and peptides are believed to be distributed asymmetrically toward the interfacial region. Tryptophan octyl ester (TOE) is an important model for membrane-bound tryptophan residues. We have characterized this molecule as a fluorescent membrane probe in terms of its ionization, partitioning, and motional characteristics in unilamellar vesicles of dioleoylphosphatidylcholine. The ionization property of this molecule in model membranes has been studied by utilizing its pH-dependent fluorescence characteristics. Analysis of pH-dependent fluorescence intensity and emission maximum shows that deprotonation of the alpha-amino group of TOE occurs with an apparent pKa of approximately 7.5 in the membrane. The fluorescence lifetime of membrane-bound TOE also shows pH dependence. The fluorescence lifetimes of TOE have been interpreted by using the rotamer model for the fluorescence decay of tryptophan. Membrane/water partition coefficients of TOE were measured in both its protonated and deprotonated forms. No appreciable difference was found in its partitioning behavior with ionization. Analysis of fluorescence polarization of TOE as a function of pH showed that there is a decrease in polarization with increasing pH, implying more rotational freedom on deprotonation. This is further supported by pH-dependent red edge excitation shift and the apparent rotational correlation time of membrane-bound TOE. TOE should prove useful in monitoring the organization and dynamics of tryptophan residues incorporated into membranes.  相似文献   

4.
The fluorescence signal of the single tryptophan residue (Trp69) of Fusarium solani pisi cutinase is highly quenched. However, prolonged irradiation of the enzyme in the tryptophan absorption band causes an increase of the tryptophan fluorescence quantum yield by an order of magnitude. By using a combination of NMR spectroscopy and chemical detection of free thiol groups with a sulfhydryl reagent we could unambiguously show that the unusual fluorescence behaviour of Trp69 in cutinase is caused by the breaking of the disulfide bond between Cys31 and Cys109 upon irradiation, while the amide-aromatic hydrogen bond between Ala32 and Trp69 remains intact. This is the first example of tryptophan mediated photoreduction of a disulfide bond in proteins.  相似文献   

5.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

6.
Caldwell CR 《Plant physiology》1993,101(3):947-953
The in vitro effects of ultraviolet B (280-320 nm) radiation on microsomal membrane proteins and partially purified ribulose bisphosphate carboxylase (Rubisco) from cucumber (Cucumis sativus L.) was investigated by measuring the direct photolytic reduction of tryptophan fluorescence and the formation of fluorescent photooxidation products. Exposure of microsomes and Rubisco to monochromatic 300-nm radiation resulted in the loss of intrinsic tryptophan fluorescence and the production of blue-emitting fluorophores. The major product of tryptophan photolysis was tentatively identified as N-formylkynurenine (N-FK). Even though the rates of tryptophan photodegradation and N-FK formation were similar, the amount of blue fluorescence produced was significantly higher in the microsomes relative to Rubisco. Studies with various free radical scavengers and other modifiers indicated that tryptophan photodegradation requires oxygen and that the subsequent formation of N-FK may involve reactive oxygen species. The optimum wavelengths for loss of typtophan fluorescence were 290 nm for the microsomes and 280 nm for Rubisco. The temperature dependence of tryptophan fluorescence and rate of tryptophan photodegradation indicated an alteration in the cucumber microsomal membranes at about 24[deg]C, which influenced protein structure and tryptophan photosensitivity.  相似文献   

7.
An abnormal fluorescence emission of protein was observed in the 33-kDa protein which is one component of the three extrinsic proteins in spinach photosystem II particle (PS II). This protein contains one tryptophan and eight tyrosine residues, belonging to a "B type protein". It was found that the 33-kDa protein fluorescence is very different from most B type proteins containing both tryptophan and tyrosine residues. For most B type proteins studied so far, the fluorescence emission is dominated by the tryptophan emission, with the tyrosine emission hardly being detected when excited at 280 nm. However, for the present 33-kDa protein, both tyrosine and tryptophan fluorescence emissions were observed, the fluorescence emission being dominated by the tyrosine residue emission upon a 280 nm excitation. The maximum emission wavelength of the 33-kDa protein tryptophan fluorescence was at 317 nm, indicating that the single tryptophan residue is buried in a very strong hydrophobic region. Such a strong hydrophobic environment is rarely observed in proteins when using tryptophan fluorescence experiments. All parameters of the protein tryptophan fluorescence such as quantum yield, fluorescence decay, and absorption spectrum including the fourth derivative spectrum were explored both in the native and pressure-denatured forms.  相似文献   

8.
Wijaya Altekar 《Biopolymers》1977,16(2):341-368
The effects of anions of neutral salts on the fluorescence emission of six proteins as well as on tryptophan and tyrosine were studied in relation to the structure of proteins. Most anions are good quenchers of tryptophyl and tyrosyl fluorescence, free or in proteins. The results with tryptophan and tyrosine indicate involvement of a collisional quenching mechanism due to agreement with Stern–Volmer law. The deactivation of fluorescence probably occurs because of the transition from singlet state to triplet state. Lehrer's modification of Stern–Volmer law was applied to proteins. The effective quenching constants ([KQ]eff) and the fraction of fluorescence available ([fa]eff) to the quencher are also calculated. In contrast to its effect on tryptophan, CH3COO? quenches tyrosyl fluorescence and ClO4? does not. The effects on fluorescence of ribonuclease and free tyrosine are similar and without any changes in emission maximum. The anions are divided into three groups based on the effect they have on tryptophan-containing proteins. (1) NO3?, NO2?, Br?, and I? have high [KQ]eff values and readily quench tryptophyl fluorescence of proteins causing a shift of emission maximum to a shorter wavelength. This change is due to the specific quenching of “exposed” tryptophan residues which are accessible to quenchers and the observed residual fluorescence is from the “buried” tryptophyls. (2) ClO4? and SCN? also quench fluorescence of tryptophan in proteins and have lower ([KQ]eff) values. In their presence the fluorescence maximum is shifted to a longer wavelength, which indicates the unfolding of a protein with [(fa)eff] = 1. (3) Cl?, CH3COO?, and SO4? do not have a direct effect on the fluorescence of tryptophan. Besides the “direct” effects, “indirect” effects on fluorophors in protein are also seen, pointing out that the neutral salts can interact in more than one manner with proteins. The effectiveness of anions in quenching fluorescence of proteins follows similar sequences which almost resemble the Hofmeister series, viz., SO4=, CH3COO? ? Cl? < ClO4? < SCN? < Br? < I? < NO3? < NO2?.  相似文献   

9.
The high pressure effects on fluorescence of free tryptophan (Trp) and its derivatives, N-acetyl-tryptophan (AT), N-acetyl-tryptophanamide (NATA), tryptophanamide (TA), and tryptophan, containing 6-polypeptides in aqueous solution, were investigated in a pressure range from 0.1 to 650 MPa. It was found by analyzing the center of spectral mass in the wavelength range from 300 to 450 nm that high pressure shifted the fluorescence spectra of all these species to red direction: 421 cm(-1) for Trp, 305 cm(-1) for AT, 310 cm(-1) for NATA, 265 cm(-1) for TA, and 220 cm(-1) for single tryptophan containing 6-polypeptides. All the fluorescence efficiencies (i.e., quantum yield) of the compounds were reduced with pressure except free tryptophan where its fluorescence efficiency was enhanced with pressure. Glycerol, ethanol, and pH obviously influenced the pressure effects on their fluorescence characteristics. Since the tryptophan fluorescence is usually used as a probe for protein structural investigation, these findings suggested that the intrinsic pressure effect on tryptophan (or its derivatives) must be taken in consideration to explain the phenomenon observed in high pressure study on biomolecules when using the usual fluorospectroscopic approaches. In the present investigation, the mechanisms involved for pressure effects on tryptophan and its derivatives were explored and discussed.  相似文献   

10.
Fluorescence of human liver alanine aminopeptidase has been attributed to tryptophan fluorescence. The fluorescence maximum is at 330 nm, 20 nm lower than that for free tryptophan, suggesting that most of the enzyme tryptophans are in a nonpolar environment and are shielded from solvent. Quenching of enzyme fluorescence by iodide, pyridine, and N-methyl nicotinamide also demonstrates that enzyme tryptophan residues are largely buried and inaccessible to solvent. Those accessible are in negatively charged environments. 8-(1'-dimethylaminonaphthalene-5'-sulfonylamido-octanoic acid (8-DNS-octanoic acid) and epsilon-DNS-L-Lys inhibit aminopeptidase. One molecule of inhibitor when bound to the enzyme quenched 57% and 63% of enzyme fluorescence, respectively. Such efficient quenching may indicate a degree of segregation of tryptophan toward the active center.  相似文献   

11.
The tryptophan-auxotrophic Bacillus subtilis LC33 mutant strain utilizes either tryptophan or 4-fluorotryptophan for growth. Proteins therefore could be isolated from these cells in either tryptophan-containing or 4-fluorotryptophan-containing forms. Since 4-fluorotryptophan is non-fluorescent, tryptophan fluorescence would be suppressed in the 4-fluorotryptophan-containing proteins, facilitating the investigation of other chromophores either on the proteins or interacting with the proteins. This approach, potentially applicable to any protein endogenous to or clonable into B. subtilis, was illustrated by an examination of the fluorescence of B. subtilis ribosomal proteins.  相似文献   

12.
In our previous paper (Reshetnyak, Ya. K., and E. A. Burstein. 2001. Biophys. J. 81:1710-1734) we confirmed the existence of five statistically discrete classes of emitting tryptophan fluorophores in proteins. The differences in fluorescence properties of tryptophan residues of these five classes reflect differences in interactions of excited states of tryptophan fluorophores with their microenvironment in proteins. Here we present a system of describing physical and structural parameters of microenvironments of tryptophan residues based on analysis of atomic crystal structures of proteins. The application of multidimensional statistical methods of cluster and discriminant analyses for the set of microenvironment parameters of 137 tryptophan residues of 48 proteins with known three-dimensional structures allowed us to 1) demonstrate the discrete nature of ensembles of structural parameters of tryptophan residues in proteins; 2) assign spectral components obtained after decomposition of tryptophan fluorescence spectra to individual tryptophan residues; 3) find a correlation between spectroscopic and physico-structural features of the microenvironment; and 4) reveal differences in structural and physical parameters of the microenvironment of tryptophan residues belonging to various spectral classes.  相似文献   

13.
A simple, sensitive, and reproducible colorimetric method for the determination of tryptophan in amounts as low as 2 μg is described. It is based on the oxidation of tryptophan by sodium nitrite and the coupling of the oxidized product to the leucodye N-1-(naphthyl)ethylenediamine dihydrochloride. The purple-pink product has an absorption maximum at 550 nm. There is no interference by carbohydrates, other amino acids, neutral salts, or a number of other compounds likely to be found in tissue hydrolysates. A number of indole derivatives including indole-3-acetic acid also react to give a colored product. Dipeptides containing tryptophan are much less reactive than free tryptophan; hence proteins must be hydrolyzed completely for the method to be useful. The assay is carried out at room temperature and can be modified easily to increase or decrease its sensitivity. It has been employed to determine the tryptophan content of a number of proteins following alkaline hydrolysis. Generally, values obtained were in close agreement with values reported in the literature.  相似文献   

14.
Steady-state intrinsic tryptophan fluorescence spectroscopy is used as a rapid, robust and economic way for screening the thermal protein conformational stability in various formulations used during the early biotechnology development phase. The most important parameters affecting protein stability in a liquid formulation, e. g. during the initial purification steps or preformulation development, are the pH of the solution, ionic strength, presence of excipients and combinations thereof. A well-defined protocol is presented for the investigation of the thermal conformational stability of proteins. This allows the determination of the denaturation temperature as a function of solution conditions. Using intrinsic tryptophan fluorescence spectroscopy for monitoring the denaturation and folding of proteins, it is crucial to understand the influence of different formulation parameters on the intrinsic fluorescence probes of proteins. Therefore, we have re-evaluated and re-assessed the influence of temperature, pH, ionic strength, buffer composition on the emission spectra of tryptophan, phenylalanine and tyrosine to correctly analyse and evaluate the data obtained from thermal-induced protein denaturation as a function of the solution parameters mentioned above. The results of this study are a prerequisite for using this method as a screening assay for analysing the conformational stability of proteins in solution. The data obtained from intrinsic protein fluorescence spectroscopy are compared to data derived from calorimetry. The advantage, challenges and applicability using intrinsic tryptophan fluorescence spectroscopy as a routine development method in pharmaceutical biotechnology are discussed.  相似文献   

15.
Monitoring the fluorescence of proteins, particularly the fluorescence of intrinsic tryptophan residues, is a popular method often used in the analysis of unfolding transitions (induced by temperature, chemical denaturant, and pH) in proteins. The tryptophan fluorescence provides several suitable parameters, such as steady‐state fluorescence intensity, apparent quantum yield, mean fluorescence lifetime, position of emission maximum that are often utilized for the observation of the conformational/unfolding transitions of proteins. In addition, the fluorescence intensities ratio at different wavelengths (usually at 330 nm and 350 nm) is becoming an increasingly popular parameter for the evaluation of thermal transitions. We show that, under certain conditions, the use of this parameter for the analysis of unfolding transitions leads to the incorrect determination of thermodynamic parameters characterizing unfolding transitions in proteins (e.g., melting temperature) and, hence, can compromise the hit identification during high‐throughput drug screening campaigns.  相似文献   

16.
The dynamics of single tryptophan (W) side chain of protease subtilisin Carlsberg (SC) and myelin basic protein (MBP) were used for probing the surface of these proteins. The W side chains are exposed to the solvent, as shown by the extent of quenching of their fluorescence by KI. Time-resolved fluorescence anisotropy measurements showed that the rotational motion of W is completely unhindered in the case of SC and partially hindered in the case of MBP. The rotational correlation time (phi) associated with the fast local motion of W did not scale linearly with the bulk solvent viscosity (eta) in glycerol-water mixtures. In contrast, phi values of either W side chains in the denatured proteins or the free W scaled almost linearly with eta, as expected by the Stokes-Einstein relationship. These results were interpreted as indicating specific partitioning of water at the surface of the proteins in glycerol-water mixtures.  相似文献   

17.
Steady-state and time-resolved fluorescence measurements were performed to elucidate the fluorescence quenching of oxazine, rhodamine, carbocyanine, and bora-diaza-indacene dyes by amino acids. Among the natural amino acids, tryptophan exhibits the most pronounced quenching efficiency. Especially, the red-absorbing dyes ATTO 655, ATTO 680, and the oxazine derivative MR 121 are strongly quenched almost exclusively by tryptophan due to the formation of weak or nonfluorescent ground-state complexes with association constants, K(ass.), ranging from 96 to 206 M(-1). Rhodamine, fluorescein, and bora-diaza-indacene derivatives that absorb at shorter wavelengths are also quenched substantially by tyrosine residues. The quenching of carbocyanine dyes, such as Cy5, and Alexa 647 by amino acids can be almost neglected. While quenching of ATTO 655, ATTO 680, and the oxazine derivative MR121 by tryptophan is dominated by static quenching, dynamic quenching is more efficient for the two bora-diaza-indacene dyes Bodipy-FL and Bodipy630/650. Labeling of the dyes to tryptophan, tryptophan-containing peptides, and proteins (streptavidin) demonstrates that knowledge of these fluorescence quenching processes is crucial for the development of fluorescence-based diagnostic assays. Changes in the fluorescence quantum yield of dye-labeled peptides and proteins might be used advantageously for the quantification of proteases and specific binding partners.  相似文献   

18.
Free radical reactions of lysozyme (Lz), tryptophan and disulfides were studied with curcumin, a lipid-soluble antioxidant from turmeric, in aqueous solution using a pulse radiolysis technique. The binding of curcumin with lysozyme was confirmed using absorption, fluorescence and stopped-flow techniques. The free radicals of curcumin generated after repairing radicals of disulfides, lysozyme and tryptophan absorb at 500-510 nm. Implication of this in evaluating the antioxidant behavior of curcumin in protecting proteins is discussed.  相似文献   

19.
Basic (encephalitogenic) protein and water-soluble proteolipid apoprotein isolated from bovine brain myelin bind 8-anilino-1-naphthalenesulfonate and 2-p-toluidinylnaphthalene-6-sulfonate with resulting enhancement of dye fluorescence and a blue-shift of the emission spectrum. The dyes had a higher affinity and quantum yield, when bound to the proteolipid (Kans=2.3x10--6,=0.67) than to the basic protein (Kans=3.3x10--5,=0.40). From the efficiency of radiationless energy transfer from trytophan to bound ANS the intramolecular distances were calculated to be 17 and 27 A for the proteolipid and basic protein, respectively. Unlike myelin, incubation with proteolytic enzymes (e.g., Pronase and trypsin) abolished fluorescence enhancement of ANS or TNS by the extracted proteins. In contrast to myelin, the fluorescence of solutions of fluorescent probes plus proteolipid was reduced by Ca-2+,not affected by La-3+, local anesthetics, or polymyxin B, and only slightly increased by low pH or blockade of free carboxyl groups. The reactions of the basic protein were similar under these conditions except for a two- to threefold increase in dye binding in the presence of La-3+, or after blockade of carboxyl groups. N-Bromosuccinimide oxidation of tryptophan groups nearly abolished native protein fluorescence, but did not affect dye binding. However, alkylation of tryptophan groups of both proteins by 2-hydroxy (or methoxy)-5-nitrobenzyl bromide reduced the of bound ANS (excited at 380 nm) to 0.15 normal. The same effect was observed with human serum albumin. The fluorescence emission of ANS bound to myelin was not affected by alkylation of membrane tryptophan groups with the Koshland reagents, except for abolition of energy transfer from tryptophan to bound dye molecules. This suggests that dye binding to protein is negligible in the intact membrane. Proteolipid incorporated into lipid vesicles containing phosphatidylserine did not bind ANS or TNS unless Ca-2+, La-3+, polymyxin B, or local anesthetics were added to reduce the net negative surface potential of the lipid membranes. However, binding to protein in the lipid-protein vesicles remained less than for soluble protein. Basic protein or bovine serum albumin dye binding sites remained accessible after equilibration of these proteins with the same lipid vesicles. It is proposed that in the intact myelin membrane the proteolipid is probably strongly associated with specific anionic membrane lipids (i.e., phosphatidylserine), and most likely deeply embedded within the lipid hydrocarbon matrix of the myelin membrane. Also, in the intact myelin membrane the fluorescent probes are associated primarily, if not solely with the membrane lipids as indicated by the binding data. This is particularly the case for TNS where the total number of myelin binding sites is three to four times the potential protein binding sites.  相似文献   

20.
A procedure is described for using nanosecond time resolved fluorescence decay data to obtain decay-associated fluorescence spectra. It is demonstrated that the individual fluorescence spectra of two or more components in a mixture can be extracted without prior knowledge of their spectral shapes or degree of overlap. The procedure is also of value for eliminating scattered light artifacts in the fluorescence spectra of turbid samples. The method was used to separate the overlapping emission spectra of the two tryptophan residues in horse liver alcohol dehydrogenase. Formation of a ternary complex between the enzyme, NAD+, and pyrazole leads to a decrease in the total tryptophan fluorescence. It is shown that the emission of both tryptophan residues decreases. The buried tryptophan (residue 314) undergoes dynamic quenching with no change in the spectral distribution. Under the same conditions, the fluorescence intensity of tryptophan (residue 15) decreases without a change in decay time but with a red shift of the emission spectrum. There is also a decrease in tryptophan fluorescence intensity when the free enzyme is acid denatured (succinate buffer, pH 4.1). The denatured enzyme retains sufficient structure to provide different microenvironments for different tryptophan residues as reflected by biexponential decay and spectrally shifted emission spectra (revealed by decay association). The value of this technique for studies of microheterogeneity in biological macromolecules is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号