首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress as a mechanism of teratogenesis   总被引:1,自引:0,他引:1  
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.  相似文献   

2.
BACKGROUND: Many teratogens induce oxidative stress, altering redox status and redox signaling; this has led to the suggestion that developmental toxicants act by disturbing redox status. The goal of these studies was to determine the consequences of altering glutathione homeostasis during organogenesis on embryo development, total DNA methylation, and activator protein-1 (AP-1) DNA binding activity and gene expression. METHODS: Gestational day 10.5 rat embryos were cultured in vitro for up to 44 hour in the presence of L-buthionine-S,R-sulfoximine (BSO), an irreversible inhibitor of gamma-glutamyl-cysteine synthetase, the rate limiting step in glutathione biosynthesis. Effects of BSO on total, oxidized and reduced glutathione, embryo development, DNA methylation, AP-1 DNA binding activity and gene expression were investigated. RESULTS: Significant depletion of glutathione by BSO was first noted at 6 hr in the embryo and at 3 hr in the yolk sac; total glutathione in the conceptus was depleted to the same extent after treatment with either 0.1 or 1.0 mM BSO. Exposure to 0.1 mM BSO did not cause a significant increase in embryotoxicity, although some impairment of growth and development was observed. In contrast, exposure to 1.0 mM BSO severely inhibited growth and development, significantly increasing the incidence of swollen hindbrains and of blebs in the forebrain, limb and maxillary regions. No significant treatment-related differences in total DNA methylation were observed. Interestingly, AP-1 DNA binding activity was similar in control and 0.1 mM BSO-treated conceptuses; however, exposure to 1.0 mM BSO increased AP-1 DNA binding at 6, 24, and 44 hr. The expression of several AP-1 family genes and of gamma-glutamylcysteine synthetase was induced in embryos cultured with 1.0 mM BSO. CONCLUSION: Exposure of embryos in vitro to BSO at a concentration that was embryotoxic induced prolonged AP-1 DNA binding activity and altered gene expression. These data suggest that AP-1 induction may serve as a biomarker of embryo stress.  相似文献   

3.
Circu ML  Aw TY 《Free radical research》2011,45(11-12):1245-1266
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

4.
《Free radical research》2013,47(11-12):1245-1266
Abstract

The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.  相似文献   

5.
Spatial and temporal expression and regulation of the antioxidant enzymes, glutathione peroxidase (GSH-Px), glutathione disulfide reductase (GSSG-Rd) may be important in determining cell-specific susceptibility to embryotoxicants. Creation of tissue-specific ontogenies for antioxidant enzyme activities during development is an important first step in understanding regulatory relationships. Early organogenesis-stage embryos were grouped according to the somite number (GD 9-13), and fetuses were evaluated by gestational day (GD 14-21). GSH-Px activities in the visceral yolk sac (VYS) increased on consecutive days from GD 9 to GD 13, representing a 5.7-fold increase during this period of development. GSH-Px activities in VYS decreased after GD 13, ultimately constituting a 37% decrease at GD 21. Head, heart, and trunk specific activities generally increased from GD 9 to GD 13 albeit not to the same magnitude as detected in the VYS. GSSG-Rd activities showed substantial increases in the VYS from GD 9 to GD 13, 6.3-fold and decreased thereafter to 50% by GD 21. The greatest changes in enzyme activities were noted in the period between GD 10 and GD 11, where the embryo establishes an active cardiovascular system and begins to convert to aerobic metabolism. Generally, from GD 14-21, embryonic organ GSH-Px and GSSG-Rd activities either remained constant or increased as gestation progressed. These studies suggest the importance of the VYS in dealing with ROS and protecting the embryo. Furthermore, understanding the consequences of lower antioxidant activities during organogenesis may help to pinpoint periods of teratogenic susceptibility to xenobiotics and increased oxygen.  相似文献   

6.
Nitric oxide generated by nitric oxide synthases (NOSs) can react with reactive oxygen species (ROS), forming peroxynitrite, which may contribute to the ROS-initiated macromolecular damage implicated in the embryopathic effects of both endogenous and drug-enhanced oxidative stress. Inducible NOS (iNOS) is nonconstitutive in most tissues, and its embryonic expression and developmental importance are unknown. Herein, during organogenesis (Gestational Days 9 and 10), wild-type B6129PF2 embryos in culture were highly susceptible to the ROS-initiating teratogens phenytoin and benzo[a]pyrene, whereas iNOS knockout embryos were substantially but not completely protected (p < .05), implicating iNOS in the embryopathic mechanism. However, in contrast to prostaglandin H synthase-catalyzed teratogen bioactivation and ROS formation, which occurs within the embryo, in vivo iNOS expression was limited to placental tissue. These results suggest that the diffusion of nitric oxide from placental progenitor tissue (ectoplacental cone) to embryonic target tissues contributes to the embryopathic effects of ROS-initiating teratogens in embryo culture, which may constitute a mechanism by which embryonic determinants of ROS-mediated teratogenesis can be modulated by maternal extra-embryonic processes.  相似文献   

7.
The effects of N-ethylmaleimide (NEM) and 1,4-dithioerythritol (DTE) on the level of oxidative modification of proteins, the state of glutathione and thioredoxin systems and the cellular redox status have been investigated in HBL-100 cells (breast epithelial cells). Breast epithelial cells cultivated in the presence of NEM were characterized by the decreased redox status, increased glutathione reductase activity, and increased concentrations of products of irreversible oxidative modification of proteins and amino acids. Cell cultivation in the presence of DTE shifted the redox status towards reduction processes and increased reversible protein modification by glutathionylation. The proposed model of intracellular redox modulation may be used in the development of new therapeutic approaches to treat diseases accompanied by impaired redox homeostasis (e.g. oncologic, inflammatory, cardiovascular and neurodegenerative disease).  相似文献   

8.
Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.  相似文献   

9.
Acetazolamide produces a characteristic forelimb reduction deformity when administered to pregnant rodents. Past studies indicated that non-rodent species (rabbit and monkey) are resistant to this effect. The present studies confirmed this fact and demonstrated that transport of acetazolamide into the rabbit embryo was similar to that in sensitive rat embryos. In monkeys, however, the concentrations of acetazolamide within maternal plasma and embryo were much lower than in rats. Carbonic anhydrase activity was also measured since inhibition of this enzyme is the primary pharmacologic effect of acetazolamide. Again the rabbit embryo had carbonic anhydrase specific activity levels similar to that of the rat. Monkey embryos, on the other hand, contained negligible levels of enzyme activity during the presumed sensitive period of development. Thus the resistance of monkey embryos to acetazolamide teratogenesis may be due to low carbonic anhydrase activity and/or the small amount of drug reaching the embryo. No basis for the resistance of rabbit embryos to acetazolamide teratogenesis was uncovered.  相似文献   

10.
11.
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.  相似文献   

12.
Protein S-thiolation or protein-glutathione mixed disulfide (PSSG) occurs when cells are exposed to oxidative stress, and has been implicated in several cellular functions. The S-thiolation of hemoglobin as well as other abundant proteins is proposed to participate as a redox buffer, being part of the antioxidant protection system of the cell during the oxidative challenge. We studied the oxidative stress caused by peroxides (H(2)O(2), cumene and tert-butyl hydroperoxide) on chicken blood by measuring the thiol/disulfide status. Chicken blood under peroxide treatment showed a time- and concentration-dependent increase in glutathione disulfide (GSSG) and PSSG. GSSG peaked immediately after treatment (1 min), while PSSG increased progressively over time, showing a maximum after about 30 min. The system recovered after 140 min of incubation, with GSSG and PSSG then barely reaching control values. The S-thiolation of hemoglobin was monitored under nondenaturing PAGE, and the fraction of S-thiolated hemoglobin, or Hb A1, rose in a dose-dependent fashion and was proportional to total S-thiolation, measured as PSSG. This significant correlation indicates that hemoglobin is the major S-thiolated protein in chicken erythrocytes treated with peroxides. The present work shows the behavior of chicken blood under peroxide treatment; it anticipated that chicken hemoglobin thiol groups can actively participate in the redox processes of erythrocytes exposed to oxidative stress, and that hemoglobin is the major S-thiolated protein. This further corroborates the hypothesis that abundant proteins, such as hemoglobin, may take part in the cellular antioxidant defense system.  相似文献   

13.
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol–disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol–disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.  相似文献   

14.
Chicken liver fatty acid synthase is rapidly inactivated and cross-linked at pH 7.2 and 8.0 by incubation with low concentrations of common biological disulfides including glutathione disulfide, coenzyme A disulfide, and glutathione-coenzyme A-mixed disulfide. Glutathione disulfide inactivation of the enzyme is accompanied by the oxidation of a total of 4-5 enzyme thiols per monomer. Only one glutathione equivalent is incorporated per monomer as a protein-mixed disulfide, and its rate of incorporation is significantly slower than the rate of inactivation. The formation of protein-SS-protein disulfides results in significant cross-linking of enzyme subunits. The inactive enzyme is rapidly and completely reactivated, and the cross-linking is completely reversed by incubation of the enzyme with thiols (10-20 mM) including dithiothreitol, mercaptoethanol, and glutathione. In a glutathione redox buffer (GSH + GSSG), disulfide bond formation comes to equilibrium. The enzyme activity at equilibrium is dependent both on the ratio of glutathione to glutathione disulfide and on the total glutathione concentration. The equilibrium constant for the redox equilibration of fatty acid synthase in a glutathione redox buffer is 15 mM (Ered + GSSG in equilibrium Eox + 2GSH). The formation of at least one protein-protein disulfide per monomer dominates the redox properties of the enzyme while the formation of one protein-mixed disulfide with glutathione (Kmixed = 0.45) has little effect on activity. The oxidation equilibrium constant suggests that there would be no significant cycling between the reduced and the oxidized enzyme in response to likely physiological variations in the hepatic glutathione status. The possibility that changes in the concentration of cellular glutathione may act as a mechanism for metabolic control of other enzymes is discussed.  相似文献   

15.
The release of glutathione disulfide has been considered an important process for the maintenance of a reduced thiol redox potential in cells during oxidative stress. In cultured rat astrocytes, permanent hydrogen peroxide-induced oxidative stress caused a rapid increase in intracellular glutathione disulfide, which was followed by the appearance of glutathione disulfide in the medium. Under these conditions, the viability of the cells was not compromised. In the presence of cyclosporin A and the quinoline-derivative MK571, inhibitors of multidrug resistance proteins (MRP1 and MRP2), glutathione disulfide accumulated in cells and the release of glutathione disulfide from astrocytes during H2O2 stress was potently inhibited, suggesting a contribution of MRP1 or MRP2 in the release of glutathione disulfide from astrocytes. Using RT-PCR we amplified a cDNA from astroglial RNA with a high degree of homology to MRP1 from humans and mouse. In contrast, no fragment was amplified by using primers specific for rat MRP2. In addition, the presence of MRP1 protein in astrocytes was demonstrated by its immunolocalization in cells expressing the astroglial marker protein glial fibrillary acidic protein. Our data identify rat astrocytes as a MRP1-expressin, brain cell type and demonstrate that this transporter participates in the release of glutathione disulfide from astrocytes during oxidative stress.  相似文献   

16.
The intestinal epithelium sits at the interface between an organism and its luminal environment, and as such is prone to oxidative damage induced by luminal oxidants. Mucosal integrity is maintained by the luminal redox status of the glutathione/glutathione disulfide (GSH/GSSG) and cysteine/cystine (Cys/CySS) couples which also support luminal nutrient absorption, mucus fluidity, and a diverse microbiota. The epithelial layer is uniquely organized for rapid self-renewal that is achieved by the well-regulated processes of crypt stem cell proliferation and crypt-to-villus cell differentiation. The GSH/GSSG and Cys/CySS redox couples, known to modulate intestinal cell transition through proliferation, differentiation or apoptosis, could govern the regenerative potential of the mucosa. These two couples, together with that of the thioredoxin/thioredoxin disulfide (Trx/TrxSS) couple are the major intracellular redox systems, and it is proposed that they each function as distinctive redox control nodes or circuitry in the control of metabolic processes and networks of enzymatic reactions. Specificity of redox signaling is accomplished in part by subcellular compartmentation of the individual redox systems within the mitochondria, nucleus, endoplasmic reticulum, and cytosol wherein each defined redox environment is suited to the specific metabolic function within that compartment. Mucosal oxidative stress would result from the disruption of these unique redox control nodes, and the subsequent alteration in redox signaling can contribute to the development of degenerative pathologies of the intestine, such as inflammation and cancer.  相似文献   

17.
Previously, we showed that cellular glutathione/glutathione disulfide (GSH/GSSG) play an important role in apoptotic signaling, and early studies linked mitochondrial GSH (mtGSH) loss to enhanced cytotoxicity. The current study focuses on the contribution of mitochondrial GSH transport and mitochondrial GSH/GSSG status to apoptosis initiation in a nontransformed colonic epithelial cell line, NCM460, using menadione (MQ), a quinone with redox cycling bioreactivity, as a model of oxidative challenge. Our results implicate the semiquinone radical in MQ-mediated apoptosis, which was associated with marked oxidation of the mitochondrial soluble GSH and protein-bound thiol pools, mitochondria-to-cytosol translocation of cytochrome c, and activation of caspase-9. MQ-induced apoptosis was potentiated by inhibition of mtGSH uptake in accordance with exacerbated mitochondrial GSSG (mtGSSG) and protein-SSG and compromised mitochondrial respiratory activity. Moreover, cell apoptosis was prevented by N-acetyl-L-cysteine (NAC) pretreatment, which restored cellular redox homeostasis. Importantly, mtGSH transport inhibition effectively blocked NAC-mediated protection in accordance with its failure to attenuate mtGSSG. These results support the importance of mitochondrial GSH transport and the mtGSH status in oxidative cell killing.  相似文献   

18.
Heat shock protein (Hsp) 70 has been reported to protect various cells and tissues from ischemic damage. However, the molecular mechanisms of the protection are incompletely understood. Ischemia induces significant alterations in cellular redox status that plays a critical role in cell survival/death pathways. We investigated the effects of Hsp70 overexpression on cellular redox status in Madin-Darby canine kidney (MDCK) cells under both hypoxic and ischemic conditions with 3 different approaches: reactive oxygen species (ROS) measurement by a fluorescence probe, redox environment evaluation by a hydroxylamine spin probe, and redox status assessment by the glutathione/glutathione disulfide (GSH/GSSG) ratio. Results from each of these approaches showed that the redox status in Hsp70 cells was more reducing than that in control cells under either hypoxic or oxygen and glucose deprivation (OGD) conditions. In order to determine the mechanisms that mediated the alterations in redox state in Hsp70 cells, we measured the activities of glutathione peroxidase (GPx) and glutathione reductase (GR), two GSH-related antioxidant enzymes. We found that OGD exposure increased GPx and GR activities 47% and 55% from their basal levels (no stress) in Hsp70 cells, compared to only 18% and 0% increase in control cells, respectively. These data, for the first time, indicate that Hsp70 modulates the activities of GPx and GR that regulate cellular redox status in response to ischemic stress, which may be important in Hsp70's cytoprotective effects.  相似文献   

19.
20.
Oxidative stress and DNA methylation are metabolically linked through the relationship between one-carbon metabolism and the transsulfuration pathway, but possible modulating effects of oxidative stress on DNA methylation have not been extensively studied in humans. Enzymes involved in DNA methylation, including DNA methyltransferases and histone deacetylases, may show altered activity under oxidized cellular conditions. Additionally, in vitro studies suggest that glutathione (GSH) depletion leads to global DNA hypomethylation, possibly through the depletion of S-adenosylmethionine (SAM). We tested the hypothesis that a more oxidized blood GSH redox status is associated with decreased global peripheral blood mononuclear cell (PBMC) DNA methylation in a sample of Bangladeshi adults. Global PBMC DNA methylation and whole blood GSH, glutathione disulfide (GSSG), and SAM concentrations were measured in 320 adults. DNA methylation was measured by using the [3H]-methyl incorporation assay; values are inversely related to global DNA methylation. Whole blood GSH redox status (Eh) was calculated using the Nernst equation. We found that a more oxidized blood GSH Eh was associated with decreased global DNA methylation (B ± SE, 271 ± 103, p = 0.009). Blood SAM and blood GSH were associated with global DNA methylation, but these relationships did not achieve statistical significance. Our findings support the hypothesis that a more oxidized blood GSH redox status is associated with decreased global methylation of PBMC DNA. Furthermore, blood SAM does not appear to mediate this association. Future research should explore mechanisms through which cellular redox might influence global DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号