共查询到20条相似文献,搜索用时 0 毫秒
1.
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined. 相似文献
2.
Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein 总被引:1,自引:0,他引:1 下载免费PDF全文
Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Δ9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from ~2.5 to ~1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids. 相似文献
3.
Tobacco mosaic virus RNA directs the synthesis of a coat protein peptide in a cell-free system from wheat 总被引:7,自引:0,他引:7
B E Roberts 《Journal of molecular biology》1973,80(4):733-742
Tobacco mosaic virus (TMV) RNA stimulates amino acid incorporation into protein in cell-free extracts from wheat germ, rye embryo and Escherichia coli. The properties of the wheat germ system are examined and the nature of the viral RNA-induced products studied with the aid of a virus mutant carrying a threonine → methionine replacement in its coat protein. A peptide containing this methionine residue is present in tryptic digests of mutant RNA-directed cell-free products, and is absent from digests of wild type RNA-directed products. The undigested cell-free product contains a very large number of polypeptides with molecular weights from 10,000 to 140,000, but little or no synthesis of correct sized coat protein is observed. 相似文献
4.
Incoming type C retroviral genomic 35S RNA is present in polysomes of undifferentiated and differentiated murine teratocarcinoma cell lines at 4 hours after infection. At the same time a 65,000 daltons viral specific protein is produced by the infected cells. These data present evidence that incoming viral RNA serves as messenger for the synthesis of gag protein precursor Pr65 early in the infectious cycle of ecotropic murine retrovirus. 相似文献
5.
Gog JR Afonso Edos S Dalton RM Leclercq I Tiley L Elton D von Kirchbach JC Naffakh N Escriou N Digard P 《Nucleic acids research》2007,35(6):1897-1907
Genome segmentation facilitates reassortment and rapid evolution of influenza A virus. However, segmentation complicates particle assembly as virions must contain all eight vRNA species to be infectious. Specific packaging signals exist that extend into the coding regions of most if not all segments, but these RNA motifs are poorly defined. We measured codon variability in a large dataset of sequences to identify areas of low nucleotide sequence variation independent of amino acid conservation in each segment. Most clusters of codons showing very little synonymous variation were located at segment termini, consistent with previous experimental data mapping packaging signals. Certain internal regions of conservation, most notably in the PA gene, may however signify previously unidentified functions in the virus genome. To experimentally test the bioinformatics analysis, we introduced synonymous mutations into conserved codons within known packaging signals and measured incorporation of the mutant segment into virus particles. Surprisingly, in most cases, single nucleotide changes dramatically reduced segment packaging. Thus our analysis identifies cis-acting sequences in the influenza virus genome at the nucleotide level. Furthermore, we propose that strain-specific differences exist in certain packaging signals, most notably the haemagglutinin gene; this finding has major implications for the evolution of pandemic viruses. 相似文献
6.
7.
8.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA. The genomic RNA has a tRNA-like structure (TLS) at the 3′-end. The 3′-TLS and hairpins in the 5′-untranslated region supposedly serve as packaging signals; however, recent studies have shown that they do not play a role in TYMV RNA packaging. In this study, we focused on packaging signals by examining a series of deletion mutants of TYMV. Analysis of encapsidated viral RNA after agroinfiltration of the deletion constructs into Nicotiana benthamiana showed that the mutant RNA lacking the protease (Pro)/helicase (Hel) region was not encapsidated by the coat proteins provided in trans, implicating that a packaging signal lies in the Pro/Hel region. Examination of two Pro−Hel− mutants showed that protein activity from the Pro/Hel domains was dispensable for the packaging of the non-replicating TYMV RNA. In contrast, the mutant TYMV RNA lacking the Pro/Hel region was efficiently encapsidated when the mutant TYMV was co-introduced with a wild-type TYMV, suggesting that packaging mechanisms might differ depending on whether the virus is replicating or not. 相似文献
9.
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ~50% smaller but ~4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. 相似文献
10.
11.
Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus 总被引:14,自引:0,他引:14 下载免费PDF全文
Isken O Grassmann CW Sarisky RT Kann M Zhang S Grosse F Kao PN Behrens SE 《The EMBO journal》2003,22(21):5655-5665
A major issue of current virology concerns the characterization of cellular proteins that operate as functional components of the viral multiplication process. Here we describe a group of host factors designated as 'NFAR proteins' that are recruited by the replication machinery of bovine viral diarrhea virus, a close relative of the human pathogen hepatitis C virus. The NFAR proteins associate specifically with both the termini of the viral RNA genome involving regulatory elements in the 5' and 3' non-translated regions. Modification of the protein interaction sites in the 3' non-translated region yielded viral RNAs that were replication deficient. Viral replication was also inhibited by RNAi approaches that reduced the concentration of RNA helicase A, a member of the NFAR group, in the host cell's cytoplasm. Further experimental data suggest that NFAR proteins mediate a circular conformation of the viral genome that may be important for the coordination of translation and replication. Because NFAR proteins are presumed components of the antiviral response, we suspect that viral recruitment may also serve to weaken cellular defense mechanisms. 相似文献
12.
The influenza A virus genome is composed of eight negative-sense RNA segments (called vRNAs), all of which must be packaged to produce an infectious virion. It is not clear whether individual vRNAs are packaged specifically or at random, however, and the total vRNA capacity of the virion is unknown. We have created modified forms of the viral nucleoprotein (NP), neuraminidase (NA), and nonstructural (NS) vRNAs that encode green or yellow fluorescent proteins and studied the efficiency with which these are packaged by using a plasmid-based influenza A virus assembly system. Packaging was assessed precisely and quantitatively by scoring transduction of the fluorescent markers in a single-round infectivity assay with a flow cytometer. We found that, under conditions in which virions are limiting, pairs of alternatively tagged vRNAs compete for packaging but do so in a nonspecific manner. Reporters representing different vRNAs were not packaged additively, as would be expected under specific packaging, but instead appeared to compete for a common niche in the virion. Moreover, 3 to 5% of transduction-competent viruses were found to incorporate two alternative reporters, regardless of whether those reporters represented the same or different vRNAs - a finding compatible with random, but not with specific, packaging. Probabilistic estimates suggest that in order to achieve this level of dual transduction by chance alone, each influenza A virus virion must package an average of 9 to 11 vRNAs. 相似文献
13.
Alphaviruses are a group of small, enveloped viruses which are widely distributed on all continents. In infected cells, alphaviruses display remarkable specificity in RNA packaging by encapsidating only their genomic RNA while avoiding packaging of the more abundant viral subgenomic (SG), cellular messenger and transfer RNAs into released virions. In this work, we demonstrate that in spite of evolution in geographically isolated areas and accumulation of considerable diversity in the nonstructural and structural genes, many alphaviruses belonging to different serocomplexes harbor RNA packaging signals (PSs) which contain the same structural and functional elements. Their characteristic features are as follows. (i) Sindbis, eastern, western, and Venezuelan equine encephalitis and most likely many other alphaviruses, except those belonging to the Semliki Forest virus (SFV) clade, have PSs which can be recognized by the capsid proteins of heterologous alphaviruses. (ii) The PS consists of 4 to 6 stem-loop RNA structures bearing conserved GGG sequences located at the base of the loop. These short motifs are integral elements of the PS and can function even in the artificially designed PS. (iii) Mutagenesis of the entire PS or simply the GGG sequences has strong negative effects on viral genome packaging and leads to release of viral particles containing mostly SG RNAs. (iv) Packaging of RNA appears to be determined to some extent by the number of GGG-containing stem-loops, and more than one stem-loop is required for efficient RNA encapsidation. (v) Viruses of the SFV clade are the exception to the general rule. They contain PSs in the nsP2 gene, but their capsid protein retains the ability to use the nsP1-specific PS of other alphaviruses. These new discoveries regarding alphavirus PS structure and function provide an opportunity for the development of virus variants, which are irreversibly attenuated in terms of production of infectious virus but release high levels of genome-free virions. 相似文献
14.
The dimer initiation site/dimer linkage sequence (DIS/DLS) region in the human immunodeficiency virus type 1 (HIV-1) RNA genome is suggested to play important roles in various steps of the virus life cycle. However, due to the presence of a putative DIS/DLS region located within the encapsidation signal region (E/psi), it is difficult to perform a mutational analysis of DIS/DLS without affecting the packaging of RNA into virions. Recently, we demonstrated that duplication of the DIS/DLS region in viral RNA caused the production of partially monomeric RNAs in virions, indicating that the region indeed mediated RNA-RNA interaction. We utilized this system to assess the precise location of DIS/DLS in the 5' region of the HIV-1 genome with minimum effect on RNA packaging. We found that the entire lower stem of the U5/L stem-loop was required for packaging, whereas the region important for dimer formation was only 10 bases long within the lower stem of the U5/L stem-loop. The R/U5 stem-loop was required for RNA packaging but was completely dispensable for dimer formation. The SL1 lower stem was important for both dimerization and packaging, but surprisingly, deletion of the palindromic sequence at the top of the loop only partially affected dimerization. These results clearly indicated that the E/psi of HIV-1 is much larger than the DIS/DLS and that the primary DIS/DLS is completely included in the E/psi. Therefore, it is suggested that RNA dimerization is a part of RNA packaging, which requires multiple steps. 相似文献
15.
The potential health risks associated with (re-)emerging positive-strand RNA (+RNA) viruses emphasizes the need for understanding host-pathogen interactions for these viruses. The innate immune system forms the first line of defense against pathogenic organisms like these and is responsible for detecting pathogen-associated molecular patterns (PAMPs). Viral RNA is a potent inducer of antiviral innate immune signaling, provoking an antiviral state by directing expression of interferons (IFNs) and pro-inflammatory cytokines. However, +RNA viruses developed various methods to avoid detection and downstream signaling, including isolation of viral RNA replication in membranous viral replication organelles (ROs). These structures therefore play a central role in infection, and consequently, loss of RO integrity might simultaneously result in impaired viral replication and enhanced antiviral signaling. This review summarizes the first indications that the innate immune system indeed has tools to disrupt viral ROs and other non- or aberrant-self membrane structures, and may do this by marking these membranes with proteins such as microtubule-associated protein 1A/1B-light chain 3 (LC3) and ubiquitin, resulting in the recruitment of IFN-inducible GTPases. Further studies should evaluate whether this process forms a general effector mechanism in +RNA virus infection, thereby creating the opportunity for development of novel antiviral therapies. 相似文献
16.
A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). 相似文献
17.
Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element 总被引:1,自引:0,他引:1 下载免费PDF全文
van Ooij MJ Polacek C Glaudemans DH Kuijpers J van Kuppeveld FJ Andino R Agol VI Melchers WJ 《Nucleic acids research》2006,34(10):2953-2965
Genomes and antigenomes of many positive-strand RNA viruses contain 3′-poly(A) and 5′-poly(U) tracts, respectively, serving as mutual templates. Mechanism(s) controlling the length of these homopolymeric stretches are not well understood. Here, we show that in coxsackievirus B3 (CVB3) and three other enteroviruses the poly(A) tract is ~80–90 and the poly(U) tract is ~20 nt-long. Mutagenesis analysis indicate that the length of the CVB3 3′-poly(A) is determined by the oriR, a cis-element in the 3′-noncoding region of viral RNA. In contrast, while mutations of the oriR inhibit initiation of (−) RNA synthesis, they do not affect the 5′-poly(U) length. Poly(A)-lacking genomes are able to acquire genetically unstable AU-rich poly(A)-terminated 3′-tails, which may be generated by a mechanism distinct from the cognate viral RNA polyadenylation. The aberrant tails ensure only inefficient replication. The possibility of RNA replication independent of oriR and poly(A) demonstrate that highly debilitated viruses are able to survive by utilizing ‘emergence’, perhaps atavistic, mechanisms. 相似文献
18.
A heterologous, high-affinity RNA ligand for human immunodeficiency virus Gag protein has RNA packaging activity 总被引:3,自引:0,他引:3 下载免费PDF全文
Retroviral RNA encapsidation depends on the specific binding of Gag proteins to packaging (psi) signals in genomic RNA. We investigated whether an in vitro-selected, high-affinity RNA ligand for the nucleocapsid (NC) portion of the Gag protein from human immunodeficiency virus type 1 (HIV-1) could mediate packaging into HIV-1 virions. We find that this ligand can functionally substitute for one of the Gag-binding elements (termed SL3) in the HIV-1 psi locus to support packaging and viral infectivity in cis. By contrast, this ligand, which fails to dimerize spontaneously in vitro, is unable to replace a different psi element (termed SL1) which is required for both Gag binding and dimerization of the HIV-1 genome. A single point mutation within the ligand that eliminates high-affinity in vitro Gag binding also abolishes its packaging activity at the SL3 position. These results demonstrate that specific binding of Gag or NC protein is a critical determinant of genomic RNA packaging. 相似文献
19.
Proof of hepatitis A virus negative-sense RNA by RNA/DNA-hybrid detection: a method for specific detection of both viral negative- and positive-strand RNA species. 下载免费PDF全文
The detection of hepatitis A virus (HAV) negative-strand RNA, which is synthesized during replication of the positive-strand RNA genome, proved to be difficult. We developed a method for the specific detection of HAV negative-strand RNA by RNA-DNA hybridization and luminescence detection using an anti-RNA:DNA hybrid antibody. This method, which is also applicable for the specific detection of positive-strand RNA, offers a simple, yet relatively rapid and certain means of detecting low amounts of RNA such as HAV negative-strand RNA. By using appropriate hybridization DNA probes, the method should be applicable for the detection of single-stranded RNA species of different viruses in general. 相似文献
20.