首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila melanogaster, the fruit fly, has been used to study molecular mechanisms of a wide range of human diseases such as cancer, cardiovascular disease and various neurological diseases1. We have optimized simple and robust behavioral assays for determining larval locomotion, adult climbing ability (RING assay), and courtship behaviors of Drosophila. These behavioral assays are widely applicable for studying the role of genetic and environmental factors on fly behavior. Larval crawling ability can be reliably used for determining early stage changes in the crawling abilities of Drosophila larvae and also for examining effect of drugs or human disease genes (in transgenic flies) on their locomotion. The larval crawling assay becomes more applicable if expression or abolition of a gene causes lethality in pupal or adult stages, as these flies do not survive to adulthood where they otherwise could be assessed. This basic assay can also be used in conjunction with bright light or stress to examine additional behavioral responses in Drosophila larvae. Courtship behavior has been widely used to investigate genetic basis of sexual behavior, and can also be used to examine activity and coordination, as well as learning and memory. Drosophila courtship behavior involves the exchange of various sensory stimuli including visual, auditory, and chemosensory signals between males and females that lead to a complex series of well characterized motor behaviors culminating in successful copulation. Traditional adult climbing assays (negative geotaxis) are tedious, labor intensive, and time consuming, with significant variation between different trials2-4. The rapid iterative negative geotaxis (RING) assay5 has many advantages over more widely employed protocols, providing a reproducible, sensitive, and high throughput approach to quantify adult locomotor and negative geotaxis behaviors. In the RING assay, several genotypes or drug treatments can be tested simultaneously using large number of animals, with the high-throughput approach making it more amenable for screening experiments.  相似文献   

3.
Deregulation of Wnt/β-catenin pathway is closely related to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD), and glycogen synthase kinase 3β (GSK-3β), the central negative regulator of Wnt pathway, is regarded as an important target for these diseases. Here, we report a series of benzo[e]isoindole-1,3-dione derivatives as selective GSK-3β inhibitors by rational-design and synthesis, which show high selectivity against GSK-3β over Cyclin-dependent kinase 2 (CDK2), and significantly activate the cellular Wnt/β-catenin pathway. The structure–activity relationship of these GSK-3β inhibitors was also explored by in silico molecular docking.  相似文献   

4.
5.
神经原纤维缠结是阿尔茨海默病(Alzheimer disease, AD)的特征性病理改变.蛋白激酶和蛋白磷酸酯酶失衡可导致骨架蛋白的异常过度磷酸化,而异常过度磷酸化的tau 和神经丝 (neurofilament, NF) 是神经原纤维缠结的组成部分.在众多激酶中,糖原合酶激酶-3(glycogen synthase kinase-3,GSK-3)可能是AD神经退行性变起重要作用.为深入探讨GSK-3在AD样神经退行性变中的作用,以磷酯酰肌醇三磷酸激酶(phosphatidylinositol 3-kinase,PI3K)的特异性抑制剂渥曼青霉素(wortmannin,WT)处理野生型鼠成神经瘤细胞株(wild type mouse neuroblastoma cell lines, N2a wt),系统观察WT处理N2a wt不同时间点(1 h、3 h、6 h)细胞代谢率、细胞形态、细胞骨架蛋白tau和NF的磷酸化状态改变以及细胞的命运,并分析了GSK-3活性与上述参数改变之间的相关性.结果发现:1 μmol/L WT处理细胞1 h,GSK-3活性与未经WT处理的对照组相比明显增高,并伴有Ser9磷酸化的GSK-3水平的降低; NF磷酸化程度增强,tau在Ser198/Ser199/Ser202位点的磷酸化增强. 1 μmol/L WT处理细胞3 h,GSK-3活性与对照组和处理1 h 组相比明显下降,NF磷酸化程度较1 h降低,但仍高于正常水平.1 μmol/L WT处理细胞6 h,细胞形态、GSK-3活性、Ser9磷酸化形式的GSK-3β的表达、NF磷酸化程度与对照组相比均无明显改变.WT呈剂量依赖性降低细胞代谢率.1 μmol/L WT处理细胞1 h和3 h导致细胞变圆,突起变短甚至消失.1 μmol/L WT处理细胞1 h,用TUNEL法和电子显微镜技术未观察到细胞凋亡.研究结果提示:在N2a细胞中过度激活GSK-3可导致神经细丝和tau蛋白的AD样过度磷酸化,从而引起神经细胞的AD样退行性变.  相似文献   

6.
Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by memory loss and decreased synaptic function. Advances in transgenic animal models of AD have facilitated our understanding of this disorder, and have aided in the development, speed and efficiency of testing potential therapeutics. Recently, we have described the characterization of a novel model of AD in the fruit fly, Drosophila melanogaster, where we expressed the human AD-associated proteins APP and BACE in the central nervous system of the fly. Here we describe synaptic defects in the larval neuromuscular junction (NMJ) in this model. Our results indicate that expression of human APP and BACE at the larval NMJ leads to defective larval locomotion behavior, decreased presynaptic connections, altered mitochondrial localization in presynaptic motor neurons and decreased postsynaptic protein levels. Treating larvae expressing APP and BACE with the γ-secretase inhibitor L-685,458 suppresses the behavioral defects as well as the pre- and postsynaptic defects. We suggest that this model will be useful to assess and model the synaptic dysfunction normally associated with AD, and will also serve as a powerful in vivo tool for rapid testing of potential therapeutics for AD.KEY WORDS: APP, Alzheimer’s disease, Drosophila, BACE, Synapse, NMJ  相似文献   

7.
An efficient and low-cost method of examining larval movement in Drosophila melanogaster is needed to study how mutations and/or alterations in the muscular, neural, and olfactory systems affect locomotor behavior. Here, we describe the implementation of wrMTrck, a freely available ImageJ plugin originally developed for examining multiple behavioral parameters in the nematode C. elegans. Our optimized method is rapid, reproducible and does not require automated microscope setups or the purchase of proprietary software. To demonstrate the utility of this method, we analyzed the velocity and crawling paths of two Drosophila mutants that affect muscle structure and/or function. Additionally, we show that this approach is useful for tracking the behavior of adult insects, including Tribolium castaneum and Drosophila melanogaster.  相似文献   

8.
Previously, tau protein kinase I/glycogen synthase kinase-3Β/kinase FA(TPKI/GSK-3Β/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3Β/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3/Β/FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3Β/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.  相似文献   

9.
A promising strategy for treating Alzheimer’s disease (AD) is hippocampal neurogenesis enhancement. Tenuigenin (TEN) is a bioactive compound extracted from Polygala tenuifolia that is widely used for treating amnesia in Chinese medicine. However, whether TEN is effective in treating AD through hippocampal neurogenesis is not fully clear. This study aimed to explore the pharmacologic effect and underlying mechanism of TEN on hippocampal neurogenesis and cognitive deficit amelioration in AD. In an in vivo study, TEN administration significantly ameliorated the cognitive decline in APP/PS1 transgenic AD mice via enhancement of hippocampal neurogenesis, which might be attributed to activation of the GSK-3β/β-catenin pathway. Furthermore, an in silico study suggested that TEN might be directly targeted to GSK-3β. Overall, TEN enhanced hippocampal neurogenesis and consequently ameliorated cognitive deficits via GSK-3β/β-catenin pathway activation, indicating that TEN might be a promising novel agent for AD treatment.  相似文献   

10.
Alzheimer’s disease (AD) is a neurodegenerative disorder in which the amyloid-β (Aβ) oligomers are a key factor in synaptic impairment and in spatial memory decline associated with neuronal dysfunction. This impairment includes synaptic failure associated with the loss of synaptic proteins that contribute to AD progression. Interestingly, the use of natural compounds is an emergent conceptual strategy in the search for drugs with therapeutic potentials for treating neurodegenerative disorders. In the present study, we report that andrographolide (ANDRO), which is a labdane diterpene extracted from Andrographis paniculata, increases slope of field excitatory postsynaptic potentials (fEPSP) in the CA1 region of hippocampal slices and inhibits long-term depression (LTD), protecting the long-term potentiation (LTP) against the damage induced by Aβ oligomers in vitro, most likely by inhibiting glycogen synthase kinase-3β (GSK-3β). Additionally, ANDRO prevents changes in neuropathology in two different age groups (7- and 12-month-old mice) of an AβPPswe/PS-1 Alzheimer’s model. ANDRO reduces the Aβ levels, changing the ontogeny of amyloid plaques in hippocampi and cortices in 7-month-old mice, and reduces tau phosphorylation around the Aβ oligomeric species in both age groups. Additionally, we observed that ANDRO recovers spatial memory functions that correlate with protecting synaptic plasticity and synaptic proteins in two different age groups. Our results suggest that ANDRO could be used in a potential preventive therapy during AD progression.  相似文献   

11.
12.
A series of novel 4-anilinoquinazoline derivatives (3a3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer’s disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/β kinase with IC50 values of 1.5 μM and 3 μM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3β. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/β enzymes with potential therapeutic application in Alzheimer’s disease.  相似文献   

13.
Numerous studies have highlighted the implications of the glycogen synthase kinase 3 (GSK-3) in several processes associated with Alzheimer’s disease (AD). Therefore, GSK-3 has become a crucial therapeutic target for the treatment of this neurodegenerative disorder. Hereby, we report the design and multistep synthesis of ethyl 4-oxo-pyrazolo[4,3-d][1–3]triazine-7-carboxylates and their biological evaluation as GSK-3 inhibitors. Molecular modelling studies allow us to develop this new scaffold optimising the chemical structure. Potential binding mode determination in the enzyme and the analysis of the key features in the catalytic site are also described. Furthermore, the ability of pyrazolotriazinones to cross the blood–brain barrier (BBB) was evaluated by passive diffusion and those who showed great GSK-3 inhibition and permeation to the central nervous system (CNS) showed neuroprotective properties against tau hyperphosphorylation in a cell-based model. These new brain permeable pyrazolotriazinones may be used for key in vivo studies and may be considered as new leads for further optimisation for the treatment of AD.  相似文献   

14.
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase which has attracted significant attention during recent years in drug design studies. The deregulation of GSK-3β increased the loss of hippocampal neurons by triggering apoptosis-mediating production of neurofibrillary tangles and alleviates memory deficits in Alzheimer’s disease (AD). Given its role in the formation of neurofibrillary tangles leading to AD, it has been a major therapeutic target for intervention in AD, hence was targeted in the present study. Twenty crystal structures were refined to generate pharmacophore models based on energy involvement in binding co-crystal ligands. Four common e-pharmacophore models were optimized from the 20 pharmacophore models. Shape-based screening of four e-pharmacophore models against nine established small molecule databases using Phase v3.9 had resulted in 1800 compounds having similar pharmacophore features. Rigid receptor docking (RRD) was performed for 1800 compounds and 20 co-crystal ligands with GSK-3β to generate dock complexes. Interactions of the best scoring lead obtained through RRD were further studied with quantum polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area. Comparing the obtained leads to 20 co-crystal ligands resulted in 18 leads among them, lead1 had the lowest docking score, lower binding free energy and better binding orientation toward GSK-3β. The 50?ns MD simulations run confirmed the stable nature of GSK-3β-lead1 docking complex. The results from RRD, QPLD, IFD and MD simulations confirmed that lead1 might be used as a potent antagonist for GSK-3β.  相似文献   

15.
Elevated glycogen synthase kinase-3 (GSK-3) activity is associated with Alzheimer disease. We have found that collapsin response mediator proteins (CRMP) 2 and 4 are physiological substrates of GSK-3. The amino acids targeted by GSK-3 comprise a hyperphosphorylated epitope first identified in plaques isolated from Alzheimer brain. Expression of wild type CRMP2 in primary hippocampal neurons or SH-SY5Y neuroblastoma cells promotes axon elongation. However, a GSK-3-insensitive CRMP2 mutant has dramatically reduced ability to promote axon elongation, a similar effect to pharmacological inhibition of GSK-3. Hence, we propose that phosphorylation of CRMP proteins by GSK-3 regulates axon elongation. This work provides a direct connection between hyperphosphorylation of these residues and elevated GSK-3 activity, both of which are observed in Alzheimer brain.  相似文献   

16.
目的 mir-153可负调控阿尔茨海默病(Alzheimer’s disease,AD)主要致病基因APP及APLP2的蛋白表达,降低其胞内降解片段(intracellular domains,ICDs)的生成。因ICDs具有转录活化及促凋亡活性,本研究旨在探讨mir-153对这两个靶基因下游信号分子GSK-3β表达水平及细胞抗损伤能力的影响,以期进一步阐明mir-153在阿尔茨海默病发病机制中的作用。方法构建mir-153稳转细胞系及mir-153转基因小鼠,Western blot检测该细胞系及小鼠脑内磷酸化GSK-3β、Tau及其总蛋白的表达;Aβ42肽和H2O2分别处理mir-153稳转细胞系,MTS法检测细胞增殖活性的改变,流式细胞术检测细胞凋亡水平的改变。结果 mir-153稳转细胞系中磷酸化GSK-3β及其总蛋白的表达下调,Tau磷酸化水平降低。mir-153转基因小鼠脑内,磷酸化GSK-3β及其总蛋白的表达降低,磷酸化Tau及其总蛋白水平均无明显变化。Aβ42肽和H2O2损伤作用下,mir-153稳转细胞系的增殖活性显著降低,凋亡水平增加。结论 mir-153可负调控靶基因下游信号分子GSK-3β的表达;高表达mir-153可降低细胞抗损伤的能力。  相似文献   

17.
Glycogen synthase kinase-3β (GSK-3β) is implicated in abnormal hyperphosphorylation of tau protein and its inhibitors are expected to be a promising therapeutic agents for the treatment of Alzheimer’s disease. Here we report design, synthesis and structure–activity relationships of a novel series of oxadiazole derivatives as GSK-3β inhibitors. Among these inhibitors, compound 20x showed highly selective and potent GSK-3β inhibitory activity in vitro and its binding mode was determined by obtaining the X-ray co-crystal structure of 20x and GSK-3β.  相似文献   

18.
糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK-3β)是糖原合成酶激酶3的一种亚型。GSK-3β不仅参与淀粉样蛋白质前体(amyloid precursor protein,APP)代谢,还在tau蛋白过度磷酸化过程中发挥作用,GSK-3β表达及活性的异常会导致神经元细胞的凋亡。APP异常代谢和tau蛋白异常磷酸化是阿尔茨海默病(Alzheimer’s disease,AD)发展的重要因素,因此GSK-3β可能与AD的病理变化密切相关,明确其在AD中的作用及其机制对AD的治疗有重要的意义。  相似文献   

19.
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague–Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3β (GSK-3β), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3β activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3β activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3β pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号