首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase C (PKC) isimplicated in the regulation of multiple important functions inintestinal epithelial cells, but the downstream signaling targets ofPKCs in these cells remain poorly characterized. Here we report thattreatment of normal rat intestinal cell lines IEC-6 and IEC-18 withphorbol 12,13-dibutyrate (PDBu) led to a rapid and strikingPKC-dependent activation of protein kinase D (PKD; also known asPKCµ). Unlike conventional and novel PKCs, PKD did not undergodownregulation in response to prolonged (24 h) exposure of IEC-6 orIEC-18 cells to PDBu. PKD was also rapidly activated in these cells bylysophosphatidic acid (LPA) or angiotensin in a concentration-dependentfashion via a PKC-dependent pathway. EC50 values were 0.1 µM and 2 nM for LPA and angiotensin II, respectively. LPA-induced PKDactivation was prevented selectively by treatment with pertussis toxin.PKD activation was tightly associated with an increase in PKDautophosphorylation at serine 916. Our results identify PKD as a novelearly point of convergence and integration of Gi andGq signaling in intestinal epithelial cells.

  相似文献   

2.
3.
Intestinal epithelial cells and the mucosal immune cells in close proximity are thought to interact very closely. One well-established mechanism of this intercellular cross-talk is via the production of cytokines such as interferon gamma (IFNγ). The aim of this study was to analyze the effects of IFNγ on intestinal crypt epithelial cells. IEC-6 cells were cultured in the presence or absence of IFNγ to measure its effects on proliferation, cell cycle, apoptosis, and major histocompatibility complex (MHC) class II antigen expression. Even at very low doses (0.01 U/ml), IFNγ significantly inhibited IEC-6 cell proliferation, as demonstrated by reduced 3H-thymidine uptake, stable cell count, and complete arrest in the quiescent G0/G1 phase of the cell cycle. Incubation with supraphysiological doses of IFNγ (100–1,000 U/ml) did not induce apoptosis, as assessed by morphology and the TUNEL assay. IFNγ significantly induced de novo IEC-6 class II antigen expression. Tumor necrosis factor alpha (TNFα), which alone had no effect, synergistically enhanced this effect of IFNγ. MHC class II antigen expression was observed to be independent of cell cycle phase. Our results indicate that IFNγ alters immature crypt epithelial cell turnover and upregulates MHC class II expression. These alterations may be important in the pathogenesis of immune-mediated bowel disorders. J. Cell. Physiol. 176:120–126, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Previous studies have shown that Astragalus polysaccharides (APS) can be used to treat general gastrointestinal disturbances including intestinal mucosal injury. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS on proliferation, migration, and differentiation of intestinal epithelial cells (IEC-6) were assessed using an in vitro wounding model and colorimetric thiazolyl blue (MTT) assays. The effect of APS on IEC-6 cell differentiation was observed using a light microscope and scanning electron microscope, and the expression of differentiation-specific markers of IEC-6 cells, such as cytokeratin 18 (CK18), alkaline phosphatase (ALP), tight junction protein ZO-2, and sucrase-isomaltase (SI), was determined by immunofluorescence assay (IFA) and real-time PCR. In addition, APS-induced signaling pathways in IEC-6 cells were characterized. Our results indicated that APS significantly enhance migration and proliferation of IEC-6 cells in vitro. APS-treated IEC-6 cells have numerous microvilli on their apical surface and also highly express CK18, ALP, ZO-2, and SI. Moreover, APS-treated IEC-6 cells, in which the activity and expression level of ornithine decarboxylase (ODC) were significantly elevated, also exhibited an increase in cellular putrescine, whereas no significant increase in TGF-β levels was observed. These findings suggest that APS may enhance intestinal epithelial cell proliferation, migration, and differentiation in vitro by stimulating ODC gene expression and activity and putrescine production, independent of TGF-β. Exogenous administration of APS may provide a new approach for modulating intestinal epithelial wound restitution in vivo.  相似文献   

5.
Transforming growth factor-β (TGF-β) has been implicated as having a role in inflammatory responses by inducing cellular infiltration and the release of inflammatory cytokines. In this study, the IEC-6 rat intestinal epithelial cell line was used as a model to assess the effect of TGF-β1 on the expression of various plasma membrane determinants. TGF-β1 induced a dose-dependent increase in the percentage of cells expressing surface secretory component (SC) and class I major histocompatibility (MHC) antigens. However, the expression of class II MHC was unaffected. In contrast, epidermal growth factor had no effect on any of the surface proteins studied. The TGF-β1-enhanced expression of SC was accompanied by an enhanced binding of polymeric, but not monomeric, immunoglobulin A (IgA). Preincubation of the TGF-β1-treated cells with an anti-human β-galactosyltransferase (β-GT) antiserum did not block the binding of the anti-SC antibody, indicating that the TGF-β-induced increase in SC staining was due to SC expression and not the polymeric immunoglobulin-binding enzyme, β-GT. These results indicate that TGF-β1 may be important in immune functions involving intestinal epithelial cells by enhancing the expression of surface class I MHC antigens and SC, a protein responsible for the transport of polymeric IgA into the intestinal lumen.  相似文献   

6.
7.
Like RIE-1 cells, two of the IEC series of rat intestinal epithelial cell lines were found to express functional angiotensin receptors. As in RIE-1 cells, treatment of IEC-6 or IEC-18 cells with angiotensin II (AII) activated phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis although (in contrast to RIE-1 cells) the magnitude of AII-induced PIP2 hydrolysis was small and not associated with a mitogenic response in either IEC cell line. In terms of their other functional responses to AII (activation of protein kinase C (PKC) and a small elevation of cyclic AMP), IEC-6 cells are otherwise similar to RIE-1 cells whereas IEC-18 cells exhibit some phenotypic differences to the other two cell types. Thus, whereas IEC-6 and RIE-1 cells each express the AT1 subtype of angiotensin receptor, the higher affinity receptors on IEC-18 cells are 'atypical', being insensitive to both AT1- and AT2-specific angiotensin receptor antagonists. Furthermore, in contrast to its effects in IEC-6 and RIE-1 cells, AII neither activates PKC nor modulates cyclic AMP levels in IEC-18 cells. Whereas IEC-18 cells express the myristoylated alanine-rich C-kinase substrate (MARCKS), immunoreactive MARCKS was not detected in IEC-6 or RIE-1 cells.  相似文献   

8.
AD (Alzheimer’s disease) is a neurodegenerative disease and the most common form of dementia. One of the pathological hallmarks of AD is the aggregation of extracellular Aβs (amyloid β-peptides) in senile plaques in the brain. The process could be initiated by seeding provided by an interaction between GM1 ganglioside and Aβs. Several reports have documented the bifunctional roles of Aβs in NSCs (neural stem cells), but the precise effects of GM1 and Aβ on NSCs have not yet been clarified. We evaluated the effect of GM1 and Aβ-(1–40) on mouse NECs (neuroepithelial cells), which are known to be rich in NSCs. No change of cell number was detected in NECs cultured in the presence of either GM1 or Aβ-(1–40). On the contrary, a decreased number of NECs were cultured in the presence of a combination of GM1 and Aβ-(1–40). The exogenously added GM1 and Aβ-(1–40) were confirmed to incorporate into NECs. The Ras–MAPK (mitogen-activated protein kinase) pathway, important for cell proliferation, was intact in NECs simultaneously treated with GM1 and Aβ-(1–40), but caspase 3 was activated. NECs treated with GM1 and Aβ-(1–40) were positive in the TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, an indicator of cell death. It was found that GM1 and Aβ-(1–40) interacted in the presence of cholesterol and sphingomyelin, components of cell surface microdomains. The cytotoxic effect was found also in NSCs prepared via neurospheres. These results indicate that Aβ-(1–40) and GM1 co-operatively exert a cytotoxic effect on NSCs, likely via incorporation into NEC membranes, where they form a complex for the activation of cell death signalling.  相似文献   

9.
Cytoplasmic lipid bodies (also known as lipid droplets) are intracellular deposits of arachidonic acid (AA), which can be metabolized for eicosanoid generation. PGE2 is a major AA metabolite produced by epithelial cells and can modulate restoration of epithelium homeostasis after injury. We studied lipid body biogenesis and their role in AA metabolic pathway in an epithelial cell line derived from normal rat intestinal epithelium, IEC-6 cells. Lipid bodies were virtually absent in confluent IEC-6 cells. Stimulation of confluent IEC-6 cells with unsaturated fatty acids, including AA or oleic acid (OA), induced rapid lipid body assembly that was independent on its metabolism to PGE2, but dependent on G-coupled receptor-driven signaling through p38, PKC, and PI3K. Newly formed lipid bodies compartmentalized cytosolic phospholipase (cPL)A2-α, while facilitated AA mobilization and synthesis of PGE2 within epithelial cells. Thus, both lipid body-related events, including highly regulated biogenesis and functional assembly of cPLA2-α-driven enhanced AA mobilization and PGE2 production, may have key roles in epithelial cell-driven inflammatory functions, and may represent relevant therapeutic targets of epithelial pathologies.  相似文献   

10.
BackgroundThe expression of taste receptors (TASRs) and their signalling molecules in the gastrointestinal (GI) epithelial cells, including enteroendocrine cells (EECs), suggests they participate in chemosensing mechanisms influencing GI physiology via the release of endocrine messengers. TASRs mediate gustatory signalling by interacting with different transducers, including α-gustducin (Gαgust) and α-transducin (Gαtran) G protein subunits. This study tested whether Gαtran and Gαgust immunoreactive (-IR) cells are affected by a short-term (3 days) and long-term (30 days) high protein (Hp) diet in the pig GI tract.ResultIn the stomach, Gαgust and Gαtran-IR cells contained serotonin (5-HT) and ghrelin (GHR), while in the small and large intestine, Gαgust and Gαtran-IR colocalized with 5-HT-, cholecystokinin (CCK)- and peptide YY (PYY)-IR. There was a significant increase in the density of Gαtran-IR cells in the pyloric mucosa in both short- and long-term Hp diet groups (Hp3 and Hp30) vs. the control group (Ctr) (P<0.05), while the increase of Gαgust-IR cells in the pyloric mucosa was significant in Hp30 group vs. Ctr and vs. Hp3 (P<0.05); these cells included Gαtran / 5HT-IR and Gαtran / GHR-IR cells (P<0.05 and P<0.001 vs. Ctr, respectively) as well as Gαgust /5-HT-IR or Gαgust / GHR-IR cells (P<0.05 and P<0.01 vs. Ctr, respectively). In the small intestine, we recorded a significant increase in Gαtran-IR cells in the duodenal crypts and a significant increase of Gαgust-IR cells in the jejunal crypts in Hp3 group compared to HP30 (P<0.05). With regard to the number of Gαtran-Gαgust IR cells colocalized with CCK or 5-HT, there was only a significant increase of Gαtran / CCK-IR cells in Hp3 group compared to Ctr (P = 0.01).ConclusionThis study showed an upregulation of selected subpopulations of Gαgust / Gαtran-IR cells in distinct regions of the pig GI tract by short- and long-term Hp diet lending support to TASR-mediated effects in metabolic homeostasis and satiety mechanisms.  相似文献   

11.
Although interleukin 2 (IL-2) has been presumed to have a highly circumscribed range of target cells limited largely to classic immune cell populations, the presence of functional IL-2 receptors in rat epithelial cell lines has recently been demonstrated. Limited information is available about the functional effects of IL-2 on intestinal epithelial cells. The effect of recombinant IL-2 on intestinal epithelial cell migration was assessed using a previously describedin vitromodel of epithelial restitution by quantitation of cells migrating into standard wounds established in confluent IEC-6 cell monolayers. Transforming growth factor β content was assessed by Northern blot and bioassay. Exogenous IL-2 enhanced epithelial cell restitutionin vitroon average 3.8-fold; this effect was independent of cell proliferation. Enhancement of restitution through IL-2 could be completely blocked through antibodies directed against TGFβ1and interleukin-2 receptor, indicating that stimulation of epithelial cell restitution is specifically enhanced by interleukin-2 and mediated through a TGFβ-dependent pathway. In addition, increased expression of TGFβ1mRNA and increased levels of bioactive TGFβ peptide in wounded monolayers treated with IL-2 compared to unwounded monolayers cultured in serum-deprived medium alone support the notion that enhancement of epithelial cell restitutionin vitrois mediated through a TGFβ-dependent pathway. These studies suggest that IL-2, a potent cytokine whose biological origin and targets have been presumed to be largely limited to lymphocyte and macrophage populations, may play a role in preserving the integrity of the intestinal epithelium following various forms of injuries.  相似文献   

12.
13.
The roles of translesion synthesis (TLS) DNA polymerases in bypassing the C8–2′-deoxyguanosine adduct (dG-C8-IQ) formed by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), a highly mutagenic and carcinogenic heterocyclic amine found in cooked meats, were investigated. Three plasmid vectors containing the dG-C8-IQ adduct at the G1-, G2- or G3-positions of the NarI site (5′-G1G2CG3CC-3′) were replicated in HEK293T cells. Fifty percent of the progeny from the G3 construct were mutants, largely G→T, compared to 18% and 24% from the G1 and G2 constructs, respectively. Mutation frequency (MF) of dG-C8-IQ was reduced by 38–67% upon siRNA knockdown of pol κ, whereas it was increased by 10–24% in pol η knockdown cells. When pol κ and pol ζ were simultaneously knocked down, MF of the G1 and G3 constructs was reduced from 18% and 50%, respectively, to <3%, whereas it was reduced from 24% to <1% in the G2 construct. In vitro TLS using yeast pol ζ showed that it can extend G3*:A pair more efficiently than G3*:C pair, but it is inefficient at nucleotide incorporation opposite dG-C8-IQ. We conclude that pol κ and pol ζ cooperatively carry out the majority of the error-prone TLS of dG-C8-IQ, whereas pol η is involved primarily in its error-free bypass.  相似文献   

14.
Fluorescence recovery after photobleaching (FRAP) was used to quantify the translational diffusion of microinjected FITC-dextrans and Ficolls in the cytoplasm and nucleus of MDCK epithelial cells and Swiss 3T3 fibroblasts. Absolute diffusion coefficients (D) were measured using a microsecond-resolution FRAP apparatus and solution standards. In aqueous media (viscosity 1 cP), D for the FITC-dextrans decreased from 75 to 8.4 × 10−7 cm2/s with increasing dextran size (4–2,000 kD). D in cytoplasm relative to that in water (D/Do) was 0.26 ± 0.01 (MDCK) and 0.27 ± 0.01 (fibroblasts), and independent of FITC-dextran and Ficoll size (gyration radii [RG] 40–300 Å). The fraction of mobile FITC-dextran molecules (fmob), determined by the extent of fluorescence recovery after spot photobleaching, was >0.75 for RG < 200 Å, but decreased to <0.5 for RG > 300 Å. The independence of D/Do on FITC-dextran and Ficoll size does not support the concept of solute “sieving” (size-dependent diffusion) in cytoplasm. Photobleaching measurements using different spot diameters (1.5–4 μm) gave similar D/Do, indicating that microcompartments, if present, are of submicron size. Measurements of D/Do and fmob in concentrated dextran solutions, as well as in swollen and shrunken cells, suggested that the low fmob for very large macromolecules might be related to restrictions imposed by immobile obstacles (such as microcompartments) or to anomalous diffusion (such as percolation). In nucleus, D/Do was 0.25 ± 0.02 (MDCK) and 0.27 ± 0.03 (fibroblasts), and independent of solute size (RG 40–300 Å). Our results indicate relatively free and rapid diffusion of macromolecule-sized solutes up to approximately 500 kD in cytoplasm and nucleus.  相似文献   

15.
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2–7 onto chromatin during late mitosis of the cell cycle. MCM2–7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G1 phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2–7 to facilitate the assembly of MCM2–7 onto chromatin at replication origins in late mitosis and G1 phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G1 phase cells. Thus, human And-1 facilitates loading of the MCM2–7 helicase onto chromatin during the assembly of pre-RC.  相似文献   

16.
All tRNAHis possess an essential extra G–1 guanosine residue at their 5′ end. In eukaryotes after standard processing by RNase P, G–1 is added by a tRNAHis guanylyl transferase. In prokaryotes, G–1 is genome-encoded and retained during maturation. In plant mitochondria, although trnH genes possess a G–1 we find here that both maturation pathways can be used. Indeed, tRNAHis with or without a G–1 are found in a plant mitochondrial tRNA fraction. Furthermore, a recombinant Arabidopsis mitochondrial RNase P can cleave tRNAHis precursors at both positions G+1 and G–1. The G–1 is essential for recognition by plant mitochondrial histidyl-tRNA synthetase. Whether, as shown in prokaryotes and eukaryotes, the presence of uncharged tRNAHis without G–1 has a function or not in plant mitochondrial gene regulation is an open question. We find that when a mutated version of a plant mitochondrial trnH gene containing no encoded extra G is introduced and expressed into isolated potato mitochondria, mature tRNAHis with a G–1 are recovered. This shows that a previously unreported tRNAHis guanylyltransferase activity is present in plant mitochondria.  相似文献   

17.

Background

Potassium channels have been shown to determine wound healing in different tissues, but their role in intestinal epithelial restitution–the rapid closure of superficial wounds by intestinal epithelial cells (IEC)–remains unclear.

Methods

In this study, the regulation of IEC migration by potassium channel modulation was explored with and without additional epidermal growth factor (EGF) under baseline and interferon-γ (IFN-γ)-pretreated conditions in scratch assays and Boyden chamber assays using the intestinal epithelial cell lines IEC-18 and HT-29. To identify possibly involved subcellular pathways, Western Blot (WB)-analysis of ERK and Akt phosphorylation was conducted and PI3K and ERK inhibitors were used in scratch assays. Furthermore, mRNA-levels of the potassium channel KCNN4 were determined in IEC from patients suffering from inflammatory bowel diseases (IBD).

Results

Inhibition of Ca2+-dependent potassium channels significantly increased intestinal epithelial restitution, which could not be further promoted by additional EGF. In contrast, inhibition of KCNN4 after pretreatment with IFN-γ led to decreased or unaffected migration. This effect was abolished by EGF. Changes in Akt, but not in ERK phosphorylation strongly correlated with these findings and PI3K but not ERK inhibition abrogated the effect of KCNN4 inhibition. Levels of KCNN4 mRNA were higher in samples from IBD patients compared with controls.

Conclusions

Taken together, we demonstrate that inhibition of KCNN4 differentially regulates IEC migration in IFN-γ-pretreated vs. non pretreated conditions. Moreover, our data propose that the PI3K signaling cascade is responsible for this differential regulation. Therefore, we present a cellular model that contributes new aspects to epithelial barrier dysfunction in chronic intestinal inflammation, resulting in propagation of inflammation and symptoms like ulcers or diarrhea.  相似文献   

18.

Objective

To investigate the protective effects and mechanisms of carbon monoxide-releasing molecule-2 (CORM-2) on barrier function of intestinal epithelial cells.

Materials and Methods

After pre-incubation with CORM-2 for 1 hour, cultured intestinal epithelial IEC-6 cells were stimulated with 50 µg/ml lipopolysaccharides (LPS). Cytokines levels in culture medium were detected using ELISA kits. Trans-epithelial electrical resistance (TER) of IEC-6 cell monolayers in Transwells were measured with a Millipore electric resistance system (ERS-2; Millipore) and calculated as Ω/cm2 at different time points after LPS treatment. The permeability changes were also measured using FITC-dextran. The levels of tight junction (TJ) proteins (occludin and ZO-1) and myosin light chain (MLC) phosphorylation were detected using Western blotting with specific antibodies. The subsequent structural changes of TJ were visualized using transmission electron microscopy (TEM).

Results

CORM-2 significantly reduced LPS-induced secretion of TNF-α and IL-1β. The LPS-induced decrease of TER and increase of permeability to FITC-dextran were inhibited by CORM-2 in a concentration dependent manner (P<0.05). LPS-induced reduction of tight junction proteins and increase of MLC phosphorylation were also attenuated. In LPS-treated cells, TEM showed diminished electron-dense material and interruption of TJ and desmosomes between the apical lateral margins of adjoining cells, which were prevented by CORM-2 treatment.

Conclusions

The present study demonstrates that CORM-2, as a novel CO-releasing molecule, has ability to protect the barrier function of LPS-stimulated intestinal epithelial cells. Inhibition of inflammatory cytokines release, restoration of TJ proteins and suppression of MLC phosphorylation are among the protective effects of CORM-2.  相似文献   

19.
Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号