首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Drosophila has long been used as model system to study development, mainly due to the ease with which it is genetically tractable. Over the years, a plethora of mutant strains and technical tricks have been developed to allow sophisticated questions to be asked and answered in a reasonable amount of time. Fundamental insight into the interplay of components of all known major signaling pathways has been obtained in forward and reverse genetic Drosophila studies. The fly eye has proven to be exceptionally well suited for mutational analysis, since, under laboratory conditions, flies can survive without functional eyes. Furthermore, the surface of the insect eye is composed of some 800 individual unit eyes (facets or ommatidia) that form a regular, smooth surface when looked at under a dissecting microscope. Thus, it is easy to see whether a mutation might affect eye development or growth by externally looking for the loss of the smooth surface (''rough eye'' phenotype; Fig. 1) or overall eye size, respectively (for examples of screens based on external eye morphology see e.g.1). Subsequent detailed analyses of eye phenotypes require fixation, plastic embedding and thin-sectioning of adult eyes.The Drosophila eye develops from the so-called eye imaginal disc, a bag of epithelial cells that proliferate and differentiate during larval and pupal stages (for review see e.g. 2). Each ommatidium consists of 20 cells, including eight photoreceptors (PR or R-cells; Fig. 2), four lens-secreting cone cells, pigment cells (''hexagon'' around R-cell cluster) and a bristle. The photoreceptors of each ommatidium, most easily identified by their light sensitive organelles, the rhabdomeres, are organized in a trapezoid made up of the six "outer" (R1-6) and two "inner" photoreceptors (R7/8; R8 [Fig. 2] is underneath R7 and thus only seen in sections from deeper areas of the eye). The trapezoid of each facet is precisely aligned with those of its neighbors and the overall anteroposterior and dorsoventral axes of the eye (Fig. 3A). In particular, the ommatidia of the dorsal and ventral (black and red arrows, respectively) halves of the eye are mirror images of each other and correspond to two chiral forms established during planar cell polarity signaling (for review see e.g. 3).The method to generate semi-thin eye sections (such as those presented in Fig. 3) described here is slightly modified from the one originally described by Tomlinson and Ready4. It allows the morphological analysis of all cells except for the transparent cone cells. In addition, the pigment of R-cells (blue arrowheads in Fig. 2 and 3) can be used as a cell-autonomous marker for the genotype of a R-cell, thus genetic requirements of genes in a subset of R-cells can readily be determined5,6.  相似文献   

2.
The central rhabdomeres in the retina of the blowfly Calliphora erythrocephala and the house fly Musca domestica are not structurally uniform. In Calliphora, four classes of central rhabdomeres were found; they are formed by a total of seven types of central visual cells, clearly distinguished by the following structural features: length of the rhabdomeres R7 or R8, position of the nucleus, rhabdomere twist, fine structure in the R7/R8 transition region, and cross-sectional area of the rhabdomeres. In the lateral part of the eye only the most common central-rhabdomere class, ‘sl.’ is present, whereas in the frontal and dorsal parts classes ‘sl’ and ‘ls’ are found in a particular numerical ratio. Near the frontal eye margin the rare class ‘per’ also appears, with two separate rhabdomeres, R7per and R8s; the morphological properties of R7per are midway between those of peripheral and central visual cells. The special ommatidia at the dorsal margin of the eye are characterized by the central rhabdomeres ‘marg’. The known functional properties of the visual cells in the fly eye can be readily assigned to these classes (Table 1, Fig. 12). The non-uniform distribution of the various kinds of central rhabdomeres suggests functional differentiation of the eye region.  相似文献   

3.
The Drosophila eye is a mosaic that results from the stochastic distribution of two ommatidial subtypes. Pale and yellow ommatidia can be distinguished by the expression of distinct rhodopsins and other pigments in their inner photoreceptors (R7 and R8), which are implicated in color vision. The pale subtype contains ultraviolet (UV)-absorbing Rh3 in R7 and blue-absorbing Rh5 in R8. The yellow subtype contains UV-absorbing Rh4 in R7 and green-absorbing Rh6 in R8. The exclusive expression of one rhodopsin per photoreceptor is a widespread phenomenon, although exceptions exist. The mechanisms leading to the exclusive expression or to co-expression of sensory receptors are currently not known. We describe a new class of ommatidia that co-express rh3 and rh4 in R7, but maintain normal exclusion between rh5 and rh6 in R8. These ommatidia, which are localized in the dorsal eye, result from the expansion of rh3 into the yellow-R7 subtype. Genes from the Iroquois Complex (Iro-C) are necessary and sufficient to induce co-expression in yR7. Iro-C genes allow photoreceptors to break the "one receptor-one neuron" rule, leading to a novel subtype of broad-spectrum UV- and green-sensitive ommatidia.  相似文献   

4.
Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.  相似文献   

5.
6.
We examined the fine structure of dorsal rim ommatidia of the compound eye of Pararge aegeria (Lepidoptera: Satyridae) and compared them with ommatidia of the large dorsal region described by Riesenberg (1983 Diploma, University of Munich). 1. The ommatidia of the dorsal rim show morphological specializations known to be typical of the perception of polarized light: (a) the dumb-bell-shaped rhabdoms contain linearly aligned rhabdomeres with only 2 orthogonally arranged microvilli orientations. The rhabdoms are composed of the rhabdomeres of 9 receptor cells, 8 of which are radially arranged. The rhabdomeres of receptor cells VI and V5, as well as D2, D4, D6 and D8 are dorsoventrally aligned, whereas the rhabdomeres of the cells H3 and H7 are perpendicular to them. The rhabdomere of the bilobed 9th retinula cell lies basally and is dorsoventrally aligned, where retinula cell VI and V5 are already axonal. (b) There is no rhabdomeric twist, and (c) the rhabdoms are rather short. 2. However, in the ommatidia of the large dorsal region, only 2 retinula cells (H3 and H7) are suitable for perception of polarized light. 3. Lucifer yellow and horse radish peroxidase were used as tracers to visualize the projections of retinula cell axons of the dorsal rim area and the large dorsal region into the optic neuropils (lamina and medulla). Two receptors (VI and V5) from both the dorsal rim area and the large dorsal region, have long visual fibres projecting into the medulla. The 7 remaining retinula cells of both eye regions, including those that meet the structural requirements for detection of polarized light in the large dorsal region, terminate in the lamina (short visual fibres). These results provide a starting point for further studies to reveal the possible neuronal pathways by which polarized light may be processed.  相似文献   

7.
Polarization sensitivity in arthropod photoreceptors is crucially dependent on the arrangement of the microvilli within the rhabdom. Here, we present an electron-microscopical study in which the degree of microvillar alignment and changes in the cross-sectional areas of the rhabdoms along their length were studied in the compound eye of the desert ant, Cataglyphis bicolor. Serial cross-sections through the retina were taken and the orientation of the microvilli was determined in the photoreceptors of individually identified ommatidia. The reconstructions of microvillar alignment were made in the three anatomically and functionally distinct regions of the Cataglyphis compound eye: the dorsal rim area (DRA), the dorsal area (DA), and the ventral area (VA). The following morphological findings are consistent with polarization sensitivities measured previously by intracellular recordings. (1) The microvilli of the DRA photoreceptors are aligned in parallel along the entire length of the cell from the distal tip of the rhabdom down to its proximal end, near the basement membrane. The microvilli of the retinular cells R1 and R5 are always parallel to each other and perfectly perpendicular, with only minor deviation, to the microvillar orientation of the remaining receptor cells. (2) In the DA and VA regions of the eye, the microvillar tufts of the small receptors R1, R3, R5, R7, and R9 change their direction repetitively every 1-4 7m for up to 90°. In contrast, the large receptor cells R2, R4, R6, and R8 maintain their microvillar orientation rigidly. (3) In the DRA ommatidia, the cross-sectional areas of the rhabdomeres do not change along the length of the rhabdom, but substantial changes occur in the DA and VA ommatidia.  相似文献   

8.
9.
This study aims to illustrate potential transport mechanisms behind the divergent approaches to nitrogen excretion seen in the ureotelic toadfish (Opsanus beta) and the ammoniotelic plainfin midshipman (Porichthys notatus). Specifically, we wish to confirm the expression of a urea transporter (UT), which is found in the gill of the toadfish and which is responsible for the unique “pulsing” nature of urea excretion and to localize the transporter within specific gill cells and at specific cellular locations. Additionally, the localization of ammonia transporters (Rhesus glycoproteins; Rhs) within the gill of both the toadfish and midshipman was explored. Toadfish UT (tUT) was found within Na+-K+-ATPase (NKA)-enriched cells, i.e., ionocytes (probably mitochondria-rich cells), especially along the basolateral membrane and potentially on the apical membrane. In contrast, midshipman UT (pnUT) immunoreactivity did not colocalize with NKA immunoreactivity and was not found along the filaments but instead within the lamellae. The cellular location of Rh proteins was also dissimilar between the two fish species. In toadfish gills, the Rh isoform Rhcg1 was expressed in both NKA-reactive cells and non-reactive cells, whereas Rhbg and Rhcg2 were only expressed in the latter. In contrast, Rhbg, Rhcg1 and Rhcg2 were expressed in both NKA-reactive and non-reactive cells of midshipman gills. In an additional transport epithelium, namely the intestine, the expression of both UTs and Rhs was similar between the two species, with only subtle differences being observed.  相似文献   

10.
Summary Genetic eye mosaics ofDrosophila melanogaster have been studied by means of anatomical techniques. Using different cell markers it was found that the ommatidia at the boundaries between phenotypes are composed of cells belonging to different clones. Therefore, the formation of an individual ommatidium does not obey a mechanism based on a common clonal origin of its constituent elements. A statistical analysis of mosaic ommatidia shows that there is a significant tendency for the receptor cellsR2-R5 on the one hand and the receptor cellsR1, R6 andR7 on the other to belong to the same cell clone. The implications of these findings are discussed.  相似文献   

11.
The height orientation of flying houseflies Musca domestica has been analyzed:
  1. The luminance threshold of the orientation behaviour has been determined. It corresponds to the luminance threshold needed for the optomotor response in the torque released by the receptors R 7/8 (Eckert, 1973).
  2. The direction of the E-vector of the linearly polarized stimulating light has been varied at a luminance just above threshold. It was found that the ability of the fly to fixate is dependent upon this parameter.
  3. The rhabdomeres R 1–6 and/or 7/8 have been stimulated selectively and the threshold of the height orientation response has been measured under the different conditions of stimulation. It has been found that the threshold of luminance, when all receptors are stimulated, is almost identical to the threshold when only the receptors R 7/8 are stimulated. If the receptors R 1–6 are stimulated specifically the response threshold is rised by 1 to 2 decades of illuminance, as compared to the specific stimulation of R 7/8.
It is concluded that the results of all experiments are in accordance with the hypothesis, that the receptors R 7/8 are necessary for the orientation behaviour.  相似文献   

12.
Summary The ommatidia in the dorsal eye of male Bibio marci (March flies) are comprised of eight retinula cells (R1–8). In the distal region, the open rhabdomeres of retinula cells 1–6 are arranged in a symmetrically circular pattern with their microvilli directed radially. Immediately beneath the crystalline cone, cell 7 forms a rhabdomere that is about 1 m long and lies in the center of the circle formed by the rhabdomeres of cells 1–6. For the remaining length of an ommatidium it is replaced by the rhabdomere of retinula cell 8. The cell body of this retinula cell almost encloses its own rhabdomere by forming a deep invagination. Consequently, no ommatidial cavity is present. In the left eye rhabdomeres R 3, 5 and 6 first twist clockwise along their longitudinal axes, while rhabdomeres R1, 2, 4 and 8 twist counterclockwise. Opposite twisting is observed in the right eye. The twist rate varies along the length of the rhabdomeres. In a middle region of 60 m, within which the direction of twist does not change, the maximal twist rates are approximately 2°–5°/m in R1–6 and even higher in R 8. In a proximal region, the direction of twist is reversed, but the initial orientation of the microvilli not reestablished. Both the cross-sectional shape of the rhabdomeres and their geometric arrangement in the retinula change along with the twisting. It is substantiated that the rhabdomeric twist is not due to artifactual deformation.Supported by the Deutsche Forschungsgemeinschaft (SFB 4: E 2)The authors thank Dr. I. de la Motte for providing the material used in this study, Prof. H. Altner for critical discussion and Dr. M. Burrows for his attentive linguistic corrections  相似文献   

13.
Rhodopsin mistrafficking can cause photoreceptor (PR) degeneration. Upon light exposure, activated rhodopsin 1 (Rh1) in Drosophila PRs is internalized via endocytosis and degraded in lysosomes. Whether internalized Rh1 can be recycled is unknown. Here, we show that the retromer complex is expressed in PRs where it is required for recycling endocytosed Rh1 upon light stimulation. In the absence of subunits of the retromer, Rh1 is processed in the endolysosomal pathway, leading to a dramatic increase in late endosomes, lysosomes, and light-dependent PR degeneration. Reducing Rh1 endocytosis or Rh1 levels in retromer mutants alleviates PR degeneration. In addition, increasing retromer abundance suppresses degenerative phenotypes of mutations that affect the endolysosomal system. Finally, expressing human Vps26 suppresses PR degeneration in Vps26 mutant PRs. We propose that the retromer plays a conserved role in recycling rhodopsins to maintain PR function and integrity.  相似文献   

14.
Bih-Hwa Shieh 《Fly》2011,5(4):356-368
Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca2+ influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP2, or mediate the Ca2+-dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca2+ following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.  相似文献   

15.
Summary In the ommatidia of Musca, the light flux transmitted by each one of the rhabdomeres of sense cells no. 1 to 6 decreases as a function of time if light falls onto these rhabdomeres. With a similar time course the light flux reflected from these rhabdomeres increases. These changes take place within a few seconds following illumination. The results have been established in the intact animal using changes in the appearance of the pseudopupil as indicator and also in surviving preparations of the eye with direct inspection of the rhabdomeres.The changes are interpreted as a consequence of interactions between pigment granules in the sense cells and electromagnetic fields induced outside the rhabdomeres by light travelling on the inside: In the dark adapted situation the granules are quite distant from the rhabdomeres, the interaction is negligible. During light adaptation the granules move close to the rhabdomeres, and as a consequence, total reflection of the light in the rhabdomere is frustrated. The relatively rapid changes in the optical characteristics of the rhabdomeres are explained by the fact that the distance, the granules have to move in order to switch from one condition to the other is in principle on the order of the wavelength of light.The results indicate, that the changes in the position of the granules are induced by the excitation of the respective sense cells themselves, for instance by the degree of their depolarisation. No interaction between the sense cells of one ommatidium nor between those of different ommatidia could be found.The function of the movement of the pigment granules is interpreted as a means to protect the sense cells no. 1 to 6 against strong illumination. — Movement of pigment granules is not induced in sense cells no. 7 and 8 with light intensities which give maximal response in sense cells no. 1 to 6.

Wertvolle Diskussionen verdanken wir Herrn Dr. K. G. Götz sowie Herrn Prof. W. Reichardt. Wir danken Fräulein T. Wiegand für Mithilfe bei den Experimenten sowie Herrn E. Freiberg für das Fertigstellen der Abbildungen.  相似文献   

16.
Summary The ultrastructure of the compound eye of the Australian tipulid fly,Ptilogyna spectabilis, is described. The ommatidia are of the acone type. The rhabdom corresponds to the basic dipteran pattern with six outer rhabdomeres from retinular cells 1–6 (R1-6) that surround two tiered central rhabdomeres from R7 and 8. Distally, for about 8 m, the rhabdom is closed. For the remainder, where the rhabdomere of R8 replaces that of R7, the rhabdom is open, and the rhabdomeres lie in a large central ommatidial extracellular space. In the proximal two thirds of the rhabdom, the central space is partitioned by processes from the retinular cells so that the individual rhabdomeres are contained in pockets.At night the rhabdom abuts the cone cells, but during the day it migrates some 20 m proximally and is connected to a narrow (1–2 m) cone cell tract. This tract is surrounded by two primary pigment cells, which occupy a more lateral position at night and thus act like an iris. Pigment in secondary pigment cells also migrates so as to screen orthodromic light above the rhabdom during the day. Between midday and midnight, the rhabdom changes in length and cross-sectional area as a result of asynchrony of the shedding and synthetic phases of photoreceptor membrane turnover. The effects of these daily adaptive changes on photon capture ability are discussed with regard to the sensitivity of the eye.  相似文献   

17.
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans.  相似文献   

18.
Summary The structure of ommatidia at the dorsal eye margin of the fly, Calliphora erythrocephala is specialized for the detection of the e-vector of polarized light. Marginal zone ommatidia are distinguished by R7/R8 receptor cells with large-diameter, short, untwisted rhabdomeres and long axons to the medulla. The arrangement of the R7 microvillar directions along the marginal zone is fan-shaped. Ommatidia lining the dorsal and frontal edge of the eye lack primary screening pigments and have foreshortened crystalline cones. The marginal ommatidia from each eye view a strip that is 5 °–20 ° contralateral to the fly's longitudinal axis and that coincides with the outer boundaries of the binocular overlap.Cobalt injection into the retina demonstrates that photoreceptor axons arising from marginal ommatidia define a special area of marginal neuropil in the second visual neuropil, the medulla. Small-field neurons arising from the marginal medulla area define, in turn, a special area of marginal neuropil in the two deepest visual neuropils, the lobula and the lobula plate. From these arise local assemblies of columnar neurons that relay the marginal zones of one optic lobe to equivalent areas of the opposite lobe and to midbrain regions from which arise descending neurons destined for the the thoracic ganglia.Optically, the marginal zone of the retina represents the lateral edge of a larger area of ommatidia involved in dorsofrontal binocular overlap. This binocularity area is also represented by special arrangements of columnar neurons, which map the binocularity area of one eye into the lobula beneath the opposite eye. Another type of binocularity neuron terminates in the midbrain.These neuronal arrangements suggest two novel features of the insect optic lobes and brain: (1) Marginal neurons that directly connect the left and right optic lobes imply that each lobe receives a common input from areas of the left and right eye, specialized for detecting the pattern of polarized light. (2) Information about the e-vector pattern of sky-light polarization may be integrated with binocular and monocular pathways at the level of descending neurons leading to thoracic motor neuropil.  相似文献   

19.
The cyclophilin homolog ninaA is required in the secretory pathway   总被引:38,自引:0,他引:38  
N J Colley  E K Baker  M A Stamnes  C S Zuker 《Cell》1991,67(2):255-263
In Drosophila, the major rhodopsin Rh1 is synthesized in endoplasmic reticulum (ER)-bound ribosomes of the R1-R6 photoreceptor cells and is then transported to the rhabdomeres where it functions in phototransduction. Mutations in the cyclophilin homolog ninaA lead to a 90% reduction in Rh1 opsin. Cyclophilins have been shown to be peptidyl-prolyl cis-trans isomerases and have been implicated in catalyzing protein folding. We now show that mutations in the ninaA gene severely inhibit opsin transport from the ER, leading to dramatic accumulations of ER cisternae in the photoreceptor cells. These results demonstrate that ninaA functions in the ER. Interestingly, ninaA and Rh1 also colocalize to secretory vesicles, suggesting that Rh1 may require ninaA as it travels through the distal compartments of the secretory pathway. These results are discussed in relation to the possible role of cyclophilins in protein folding and intracellular protein trafficking.  相似文献   

20.
We describe a system for detecting somatic cell mutation to 8-azaguanine (8AG) resistance in cultured, diploid human fibroblasts. Hypoxanthine-guanine phosphoribosyltransferase (HG-PRT)-deficient, AG-resistant fibroblasts from boys with the X-chromosomal, Lesch-Nyhan (L-N) mutation served as one type of prototype mutant cells. Both spontaneous and X-ray-induced mutation were studied. Recovery of L-N cells was a function both of density of normal cells and of the AG concentration used for selection. Optimum recovery was achieved at an initial inoculum of 2·104 normal cells per 60 mm diameter culture dish and an AG concentration of 8·10?6M. Efficiency of recovery was between 39 and 90% and controls to determine this efficiency were included in mutagenesis experiments.Attempts to free normal cell populations of pre-existing AG-resistant mutant cells by pregrowth in HAT medium failed because, unlike L-N mutants, most spontaneous AG-resistant mutants can grow in HAT medium. Although pre-existing mutants probably caused overestimation, the average spontaneous mutation rate derived from our experiments was 4.5·10?6 per cell generation. Eliminating one large-yieldv experiment reduced this estimate to 1.9·10?6. Clonal survival of cultured human fibroblasts as a function of X-ray dose was studied. X-Irradiation increased the mutation rate above spontaneous background. Minimum estimates of the increases were 1.13·10?9 per R per cell at 75 R, 7.49·10?8 per R per cell at 125 R, 6.87·10?8 per R per cell at 150 R and 2.16·10?7 per R per cell at 250 R. The total mutagenic effect and the induced mutation rate appeared to be dose-dependent. Normal parental cell strains and their derived AG-resistant mutants had similar X-ray sensitivities indicating that X-rays induced mutations rather than selected for pre-existing mutants.Because of the realism of the cultured diploid, human fibroblast model vis-a-vis in vivohuman cellular events, the mutation detection system described herein is proposed as being potentially useful for environmental monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号