首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Listeria monocytogenes is a human intracellular pathogen able to colonize host tissues after ingestion of contaminated food, causing severe invasive infections. In order to gain a better understanding of the nature of host–pathogen interactions, we studied the L. monocytogenes genome expression during mouse infection. In the spleen of infected mice, ≈20% of the Listeria genome is differentially expressed, essentially through gene activation, as compared to exponential growth in rich broth medium. Data presented here show that, during infection, Listeria is in an active multiplication phase, as revealed by the high expression of genes involved in replication, cell division and multiplication. In vivo bacterial growth requires increased expression of genes involved in adaptation of the bacterial metabolism and stress responses, in particular to oxidative stress. Listeria interaction with its host induces cell wall metabolism and surface expression of virulence factors. During infection, L. monocytogenes also activates subversion mechanisms of host defenses, including resistance to cationic peptides, peptidoglycan modifications and release of muramyl peptides. We show that the in vivo differential expression of the Listeria genome is coordinated by a complex regulatory network, with a central role for the PrfA-SigB interplay. In particular, L. monocytogenes up regulates in vivo the two major virulence regulators, PrfA and VirR, and their downstream effectors. Mutagenesis of in vivo induced genes allowed the identification of novel L. monocytogenes virulence factors, including an LPXTG surface protein, suggesting a role for S-layer glycoproteins and for cadmium efflux system in Listeria virulence.  相似文献   

3.
During infection, plasma membrane (PM) blebs protect host cells against bacterial pore‐forming toxins (PFTs), but were also proposed to promote pathogen dissemination. However, the details and impact of blebbing regulation during infection remained unclear. Here, we identify the endoplasmic reticulum chaperone Gp96 as a novel regulator of PFT‐induced blebbing. Gp96 interacts with non‐muscle myosin heavy chain IIA (NMHCIIA) and controls its activity and remodelling, which is required for appropriate coordination of bleb formation and retraction. This mechanism involves NMHCIIA–Gp96 interaction and their recruitment to PM blebs and strongly resembles retraction of uropod‐like structures from polarized migrating cells, a process that also promotes NMHCIIA–Gp96 association. Consistently, Gp96 and NMHCIIA not only protect the PM integrity from listeriolysin O (LLO) during infection by Listeria monocytogenes but also affect cytoskeletal organization and cell migration. Finally, we validate the association between Gp96 and NMHCIIA in vivo and show that Gp96 is required to protect hosts from LLO‐dependent killing.  相似文献   

4.
Listeria monocytogenes is a facultative intracellular pathogen that causes gastroenteritis, meningitis, encephalitis and maternofetal infections. 20–30% of eubacterial ORFs are predicted to encode membrane proteins. The bacterial cytoplasmic membrane is a macromolecular structure, which plays a key role for the pathogenesis. Despite this, little knowledge exists regarding the function of cytoplasmic membrane proteins of Listeria during infection. Here, we investigated a predicted membrane protein of the pathogen L. monocytogenes, Lmo0412, of unknown function. Lmo0412 is only present in the Listeria genus and low conserved in the non-pathogenic species L. innocua. Bacterial fractionation and western blot analyses showed that Lmo0412 was only detectable in the membrane of L. monocytogenes EGDe during logarithmic growth phase. lmo0412 expression in L. monocytogenes was down-regulated during in vitro infection of JEG-3 epithelial cells. An L. monocytogenes mutant deficient in this membrane protein showed increased invasion of Caco-2 and NRK-49F host cells using in vitro infection models. Moreover, the lack of Lmo0412 in this deletion mutant increased the viable bacteria counts in the spleen and liver of mice compared to the wild type strain. Taken together, these data suggest a selective advantage conferred by the absence of Lmo0412 for the virulence of L. monocytogenes.  相似文献   

5.
Although the intracellular bacterium Listeria monocytogenes has an established predilection for disseminated infection during pregnancy that often results in spontaneous abortion or stillbirth, the specific host-pathogen interaction that dictates these disastrous complications remain incompletely defined. Herein, we demonstrate systemic maternal Listeria infection during pregnancy fractures fetal tolerance and triggers fetal wastage in a dose-dependent fashion. Listeria was recovered from the majority of concepti after high-dose infection illustrating the potential for in utero invasion. Interestingly with reduced inocula, fetal wastage occurred without direct placental or fetal invasion, and instead paralleled reductions in maternal Foxp3+ regulatory T cell suppressive potency with reciprocal expansion and activation of maternal fetal-specific effector T cells. Using mutants lacking virulence determinants required for in utero invasion, we establish Listeria cytoplasmic entry is essential for disrupting fetal tolerance that triggers maternal T cell-mediated fetal resorption. Thus, infection-induced reductions in maternal Foxp3+ regulatory T cell suppression with ensuing disruptions in fetal tolerance play critical roles in pathogenesis of immune-mediated fetal wastage.  相似文献   

6.
Listeria monocytogenes (Listeria) is a Gram-positive facultative intracellular pathogen1. Mouse studies typically employ intravenous injection of Listeria, which results in systemic infection2. After injection, Listeria quickly disseminates to the spleen and liver due to uptake by CD8α+ dendritic cells and Kupffer cells3,4. Once phagocytosed, various bacterial proteins enable Listeria to escape the phagosome, survive within the cytosol, and infect neighboring cells5. During the first three days of infection, different innate immune cells (e.g. monocytes, neutrophils, NK cells, dendritic cells) mediate bactericidal mechanisms that minimize Listeria proliferation. CD8+ T cells are subsequently recruited and responsible for the eventual clearance of Listeria from the host, typically within 10 days of infection6.Successful clearance of Listeria from infected mice depends on the appropriate onset of host immune responses6 . There is a broad range of sensitivities amongst inbred mouse strains7,8. Generally, mice with increased susceptibility to Listeria infection are less able to control bacterial proliferation, demonstrating increased bacterial load and/or delayed clearance compared to resistant mice. Genetic studies, including linkage analyses and knockout mouse strains, have identified various genes for which sequence variation affects host responses to Listeria infection6,8-14. Determination and comparison of infection kinetics between different mouse strains is therefore an important method for identifying host genetic factors that contribute to immune responses against Listeria. Comparison of host responses to different Listeria strains is also an effective way to identify bacterial virulence factors that may serve as potential targets for antibiotic therapy or vaccine design.We describe here a straightforward method for measuring bacterial load (colony forming units [CFU] per tissue) and preparing single-cell suspensions of the liver and spleen for FACS analysis of immune responses in Listeria-infected mice. This method is particularly useful for initial characterization of Listeria infection in novel mouse strains, as well as comparison of immune responses between different mouse strains infected with Listeria. We use the Listeria monocytogenes EGD strain15 that, when cultured on blood agar, exhibits a characteristic halo zone around each colony due to β-hemolysis1 (Figure 1). Bacterial load and immune responses can be determined at any time-point after infection by culturing tissue homogenate on blood agar plates and preparing tissue cell suspensions for FACS analysis using the protocols described below. We would note that individuals who are immunocompromised or pregnant should not handle Listeria, and the relevant institutional biosafety committee and animal facility management should be consulted before work commences.  相似文献   

7.
For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection.  相似文献   

8.
The success of Listeria monocytogenes as a food-borne pathogen owes much to its ability to survive a variety of stresses, both in the external environment prior to ingestion and subsequently within the animal host. Growth at high salt concentrations and low temperatures is attributed mainly to the accumulation of organic solutes such as glycine betaine and carnitine. We utilized a novel system for generating chromosomal mutations (based on a lactococcal pWVO1-derived Ori+ RepA vector, pORI19) to identify a listerial OpuC homologue. Mutating the operon in two strains of L. monocytogenes revealed significant strain variation in the observed activity of OpuC. Radiolabeled osmolyte uptake studies, together with growth experiments in defined media, linked OpuC to carnitine and glycine betaine uptake in Listeria. We also investigated the role of OpuC in contributing to the growth and survival of Listeria in an animal (murine) model of infection. Altering OpuC resulted in a significant reduction in the ability of Listeria to colonize the upper small intestine and cause subsequent systemic infection following peroral inoculation.  相似文献   

9.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

10.
11.

Background

Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection.

Methodology/Principal Findings

The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h.

Conclusions/Significance

Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.  相似文献   

12.
Summary: The genome of the human food-borne pathogen Listeria monocytogenes is predicted to encode a high number of surface proteins. This abundance likely reflects the ability of this bacterium to survive in diverse environments, including soil, food, and the human host. This review focuses on the various mechanisms by which listerial proteins are attached at the bacterial surface and their many functions, including peptidoglycan metabolism, protein processing, adhesion to host cells, and invasion of host tissues. Extensive in silico analysis of the domains or motifs present in these mosaic proteins reveals that diverse structural features allow the surface proteome to interact with diverse bacterial or host components. This diversity offers new clues about the molecular bases of Listeria pathogenesis.  相似文献   

13.
Listeria monocytogenes, which is an intracellular pathogen, causes various illnesses in human as well as in animals. The pathogenicity of this organism depends upon the presence of different virulence genes. A total of 324 tropical seafood and fishery environmental samples were screened for L. monocytogenes. The incidence of the human pathogenic species L. monocytogenes was 1.2 % of the samples. Listeria spp. was detected in 32.3, 27.1, and 5 % of fresh, frozen, and dry fish samples, respectively. Listeria innocua was found to be the most prevalent species of Listeria in the tropical seafood and environmental samples of Kerala. Listeria monocytogenes and L. innocua isolates were confirmed by multiplex PCR. L. monocytogenes isolates from the four positive samples showed phosphatidylinositol-specific phospholipase C reaction on Chromocult® Listeria selective agar. Molecular characterization of L. monocytogenes isolates for virulence genes revealed the presence of β-hemolysin (hly), plcA, actA, metalloprotease (mpl), iap and prfA genes in all the isolates recovered from the positive samples.  相似文献   

14.
Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host–pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.  相似文献   

15.
16.
Listeria monocytogenes is a Gram-positive human intracellular pathogen that infects diverse mammalian cells. Upon invasion, L. monocytogenes secretes multiple virulence factors that target host cellular processes and promote infection. It has been presumed, but was not empirically established, that the Sec translocation system is the primary mediator of this secretion. Here, we validate an important role for SecDF, a component of the Sec system, in the secretion of several critical L. monocytogenes virulence factors. A ΔsecDF mutant is demonstrated to exhibit impaired membrane translocation of listeriolysin O (LLO), PlcA, PlcB, and ActA, factors that mediate L. monocytogenes phagosomal escape and spread from cell to cell. This impaired translocation was monitored by accumulation of the factors on the bacterial membrane and by reduced activity upon secretion. This defect in secretion is shown to be associated with a severe intracellular growth defect of the ΔsecDF mutant in macrophages and a less virulent phenotype in mice, despite normal growth in laboratory medium. We further show that SecDF is upregulated when the bacteria reside in macrophage phagosomes and that it is necessary for efficient phagosomal escape. Taken together, these data support the premise that SecDF plays a role as a chaperone that facilitates the translocation of L. monocytogenes virulence factors during infection.  相似文献   

17.
Listeria monocytogenes causes a life-threatening food-borne disease known as Listeriosis. Elderly, immunocompromised, and pregnant women are primarily the victims of this facultative intracellular Gram-positive pathogen. Since the bacteria survive intracellularly within the human host cells they are protected against the immune system and poorly accessed by many antibiotics. In order to screen pharmaceutical substances for their ability to interfere with the infection, persistence and release of L. monocytogenes a high content assay is required. We established a high content screen (HCS) using the RAW 264.7 mouse macrophage cell line seeded into 96-well glass bottom microplates. Cells were infected with GFP-expressing L. monocytogenes and stained thereafter with Hoechst 33342. Automated image acquisition was carried out by the ScanR screening station. We have developed an algorithm that automatically grades cells in microscopy images of fluorescent-tagged Listeria for the severity of infection. The grading accuracy of this newly developed algorithm is 97.1% as compared to a 74.3% grading accuracy we obtained using the commercial Olympus ScanR software.  相似文献   

18.
Here we show that cells lacking the heme-regulated inhibitor (HRI) are highly resistant to infection by bacterial pathogens. By examining the infection process in wild-type and HRI null cells, we found that HRI is required for pathogens to execute their virulence-associated cellular activities. Specifically, unlike wild-type cells, HRI null cells infected with the gram-negative bacterial pathogen Yersinia are essentially impervious to the cytoskeleton-damaging effects of the Yop virulence factors. This effect is due to reduced functioning of the Yersinia type 3 secretion (T3S) system which injects virulence factors directly into the host cell cytosol. Reduced T3S activity is also observed in HRI null cells infected with the bacterial pathogen Chlamydia which results in a dramatic reduction in its intracellular proliferation. We go on to show that a HRI-mediated process plays a central role in the cellular infection cycle of the Gram-positive pathogen Listeria . For this pathogen, HRI is required for the post-invasion trafficking of the bacterium to the infected host cytosol. Thus by depriving Listeria of its intracellular niche, there is a highly reduced proliferation of Listeria in HRI null cells. We provide evidence that these infection-associated functions of HRI (an eIF2α kinase) are independent of its activity as a regulator of protein synthesis. This is the first report of a host factor whose absence interferes with the function of T3S secretion and cytosolic access by pathogens and makes HRI an excellent target for inhibitors due to its broad virulence-associated activities.  相似文献   

19.
Listeria monocytogenes is the etiologic agent of listeriosis, a food-borne disease affecting humans and a variety of animals. In order to combat this pathogen, it is crucial to have an understanding of its natural interplay with the environment. For this reason, the free soil nematode Caenorhabditis elegans was focused upon because of its shared natural habitat with Listeria and its potential as a model organism for Listeria pathogenesis. Previous studies have generated some contradictory results on Listeria’s ability to kill C. elegans, making additional interaction studies such as this more attractive. In our study, we carried out a series of killing assays in a systematic manner using different Listeria strains under different growth conditions. In addition to studying the effects of planktonic cells, we examined the interaction between C. elegans and sessile listerial cells. Our findings suggest that, rather than causing infection and death, L. monocytogenes may extend the life span of C. elegans. This indicates that Listeria is not pathogenic to C. elegans. We also found that C. elegans can feed and ingest sessile cells, as well as carry the pathogen in its gut, implying that C. elegans could be a vehicle for L. monocytogenes spread in the environment.  相似文献   

20.
Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号