首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
3.
Colorectal carcinomas (CRCs) with P53 mutations have been shown to be resistant to chemotherapy with 5-fluorouracil (5-FU), the most widely used chemotherapeutic drug for CRC treatment. Autophagy is emerging as a promising therapeutic target for drug-resistant tumors. In the present study, we tested the effects of ursolic acid (UA), a natural triterpenoid, on cell death mechanisms and its effects in combination with 5-FU in the HCT15 p53 mutant apoptosis-resistant CRC cell line. The involvement of UA in autophagy and its in vivo efficacy were evaluated.Our data show that UA induces apoptosis independent of caspases in HCT15 cells and enhances 5-FU effects associated with an activation of c-jun N-terminal kinase (JNK). In this cell line, where this compound has a more pronounced effect on the induction of cell death compared to 5-FU, apoptosis corresponds only to a small percentage of the total cell death induced by UA. UA also modulated autophagy by inducing the accumulation of LC3 and p62 levels with involvement of JNK pathway, which indicates a contribution of autophagy on JNK-dependent induction of cell death by UA. By using nude mice xenografted with HCT15 cells, we verified that UA was also active in vivo decreasing tumor growth rate.In conclusion, this study shows UA's anticancer potential both in vitro and in vivo. Induction of cell death and modulation of autophagy in CRC-resistant cells were shown to involve JNK signaling.  相似文献   

4.
5.
The p53 pathway displays a large degree of redundancy in the expression of a number of pro-apoptotic mechanisms following DNA damage that, among others, involves increased expression of several pro-apoptotic genes through transactivation. Spatial and temporal cellular contexts contribute to the complexity of the regulation of apoptosis, hence different genes may show a cell- and tissue-dependent specificity with regard to the regulation of cell death and act in concert or show redundancy with one and another. We used siRNA technology to assess the effect of multiple ablations of documented pro-apoptotic p53 target genes (PPG) in the colorectal cancer cell line HCT116 and generated mice deficient in both of the extrinsic and intrinsic PPGs genes Dr5 and Puma following treatment with chemotherapeutics and ionizing radiation. DR5, Fas, Bax, Bad, Puma and Bnip3L were induced by 5-FU and adriamycin (ADR) in HCT116 cells in a p53-dependent manner. The resulting caspase 3/7 activity in HCT116 cells following treatment were suppressed by ablated expression of the PPGs in the extrinsic as well as the intrinsic pathway. To our surprise, knocking-down any of the PPGs concomitantly with DR5 did not further inhibit caspase 3/7 activity whereas inhibiting DR5-expression in HCT116Bax knockdown (kd) and HCT116Fas kd did, suggesting that these genes act downstream or in synergy with DR5. This was supported by our in vivo observations, since Puma and Dr5 were equally efficient in protecting cells of the spleen from sub-lethal radiation-induced apoptosis but less effective compared with irradiated p53−/− mice. To our surprise, Dr5−/−; Puma−/− mice did not show additive protection from radiation-induced apoptosis in any of the investigated organs. Our data indicates that the intrinsic pathway may rely on extrinsic signals to promote cell death in a cell- and tissue-dependent manner following DNA damage. Furthermore, p53 must rely on mechanisms independent of DR5 and PUMA to initiate apoptosis following γ-radiation in the spleen and thymus in vivo.Key words: p53, KILLER/DR5, PUMA, apoptosis, DNA damage  相似文献   

6.
7.
ATRX is an X-encoded member of the SNF2 family of ATPase/helicase proteins thought to regulate gene expression by modifying chromatin at target loci. Mutations in ATRX provided the first example of a human genetic disease associated with defects in such proteins. To better understand the role of ATRX in development and the associated abnormalities in the ATR-X (alpha thalassemia mental retardation, X-linked) syndrome, we conditionally inactivated the homolog in mice, Atrx, at the 8- to 16-cell stage of development. The protein, Atrx, was ubiquitously expressed, and male embryos null for Atrx implanted and gastrulated normally but did not survive beyond 9.5 days postcoitus due to a defect in formation of the extraembryonic trophoblast, one of the first terminally differentiated lineages in the developing embryo. Carrier female mice that inherit a maternal null allele should be affected, since the paternal X chromosome is normally inactivated in extraembryonic tissues. Surprisingly, however, some carrier females established a normal placenta and appeared to escape the usual pattern of imprinted X-inactivation in these tissues. Together these findings demonstrate an unexpected, specific, and essential role for Atrx in the development of the murine trophoblast and present an example of escape from imprinted X chromosome inactivation.  相似文献   

8.
Capecitabine (CAP) is a 5-FU pro-drug approved for the treatment of several cancers and it is used in combination with gemcitabine (GEM) in the treatment of patients with pancreatic adenocarcinoma (PDAC). However, limited pre-clinical data of the effects of CAP in PDAC are available to support the use of the GEMCAP combination in clinic. Therefore, we investigated the pharmacokinetics and the efficacy of CAP as a single agent first and then in combination with GEM to assess the utility of the GEMCAP therapy in clinic. Using a model of spontaneous PDAC occurring in KrasG12D; p53R172H; Pdx1-Cre (KPC) mice and subcutaneous allografts of a KPC PDAC-derived cell line (K8484), we showed that CAP achieved tumour concentrations (∼25 µM) of 5-FU in both models, as a single agent, and induced survival similar to GEM in KPC mice, suggesting similar efficacy. In vitro studies performed in K8484 cells as well as in human pancreatic cell lines showed an additive effect of the GEMCAP combination however, it increased toxicity in vivo and no benefit of a tolerable GEMCAP combination was identified in the allograft model when compared to GEM alone. Our work provides pre-clinical evidence of 5-FU delivery to tumours and anti-tumour efficacy following oral CAP administration that was similar to effects of GEM. Nevertheless, the GEMCAP combination does not improve the therapeutic index compared to GEM alone. These data suggest that CAP could be considered as an alternative to GEM in future, rationally designed, combination treatment strategies for advanced pancreatic cancer.  相似文献   

9.
HAMLET (Human α-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.  相似文献   

10.
11.
BackgroundColon cancer treatments include surgery, radiotherapy, and chemotherapy. Chemotherapy using 5-fluorouracil (5-FU) has been widely applied to treat colorectal cancer (CRC). However, it is important to explore the use of chemotherapy drugs in combination with other agents to decrease severe adverse effects.PurposeThis study aimed to investigate the effects of curcumin in combination with 5-FU on the proliferation, migration, and apoptosis of CRC SW620 cell line both in vitro and in vivo.MethodsFlow cytometry was used to study the effect of curcumin on chemotherapy-induced apoptosis in CRC cells. The mechanism of curcumin's enhanced antitumor effect in vivo was investigated using gene knockdown, TUNEL, western blot, qRT-PCR and immunohistochemistry.ResultsThe results showed a synergistic effect of the two compounds on CRC cells. Considerable reduction in the proliferation and migration of SW620 cells was observed in the combination treatment group. Significantly increased apoptosis rate extended the survival of immunodeficient mice in the combination group as compared to that of the 5-FU group (p < 0.05). The results showed that curcumin significantly inhibited pERK signaling and downregulated L1 expression in SW620 cells.ConclusionsWe conclude that curcumin promotes chemosensitivity of CRC cells to 5-FU by downregulating L1 expression. Our findings provide experimental evidence for the synergism between curcumin and 5-FU, which can be utilized in clinical applications for reducing the toxicity and adverse effects of 5-FU.  相似文献   

12.
Much effort has been put in the discovery of ways to selectively kill p53-deficient tumor cells and targeting cell cycle checkpoint pathways has revealed promising candidates. Studies in zebrafish and human cell lines suggested that the DNA damage response kinase, checkpoint kinase 1 (Chk1), not only regulates onset of mitosis but also cell death in response to DNA damage in the absence of p53. This effect reportedly relies on ataxia telangiectasia mutated (ATM)-dependent and PIDDosome-mediated activation of Caspase-2. However, we show that genetic ablation of PIDDosome components in mice does not affect cell death in response to γ-irradiation. Furthermore, Chk1 inhibition largely failed to sensitize normal and malignant cells from p53−/− mice toward DNA damaging agents, and p53 status did not affect the death-inducing activity of DNA damage after Chk1 inhibition in human cancer cells. These observations argue against cross-species conservation of a Chk1-controlled cell survival pathway demanding further investigation of the molecular machinery responsible for cell death elicited by forced mitotic entry in the presence of DNA damage in different cell types and model organisms.  相似文献   

13.
Metastatic colorectal cancer remains a serious health concern with poor patient survival. Although 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) is the standard therapy for colorectal cancer, it has met with limited success. Recurrence of the tumor after chemotherapy could partly be explained by the enrichment of the chemo-resistant sub-population of cancer stem cells (CSCs) that possess the ability for self-renewal and differentiation into different lineages in the tumor. Therefore development of therapeutic strategies that target CSCs for successful treatment of this malignancy is warranted. The current investigation was undertaken to examine the effectiveness of the combination therapy of dasatinib (a Src inhibitor) and curcumin (a dietary agent with pleiotropic effect) in inhibiting the growth and other properties of carcinogenesis of chemo-resistant colon cancer cells that are enriched in CSCs sub-population. Remnants of spontaneous adenomas from APC Min +/- mice treated with dasatinib and/or curcumin were analyzed for several cancer stem cell markers (ALDH, CD44, CD133 and CD166). Human colon cancer cells HCT-116 (p53 wild type; K-ras mutant) and HT-29 (p53 mutant; K-ras wild type) were used to generate FOLFOX resistant (referred to as CR) cells. The effectiveness of the combination therapy in inhibiting growth, invasive potential and stemness was examined in colon cancer CR cells. The residual tumors from APC Min +/- mice treated with dasatinib and/or curcumin showed 80-90% decrease in the expression of the CSC markers ALDH, CD44, CD133, CD166. The colon cancer CR cells showed a higher expression of CSCs markers, cell invasion potential and ability to form colonospheres, compared to the corresponding parental cells. The combination therapy of dasatinib and curcumin demonstrated synergistic interactions in CR HCT-116 and CR HT-29 cells, as determined by Calcusyn analysis. The combinatorial therapy inhibited cellular growth, invasion and colonosphere formation and also reduced CSC population as evidenced by the decreased expression of CSC specific markers: CD133, CD44, CD166 and ALDH. Our data suggest that the combination therapy of dasatinib and curcumin may be a therapeutic strategy for re-emergence of chemo-resistant colon cancer by targeting CSC sub-population.  相似文献   

14.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

15.
16.
The p53 pathway displays a large degree of redundancy in the expression of a number of pro-apoptotic mechanisms following DNA damage that, among others, involves increased expression of several pro-apoptotic genes through transactivation. Spatial and temporal cellular contexts contribute to the complexity of the regulation of apoptosis, hence different genes may show a cell- and tissue-dependent specificity with regard to the regulation of cell death and act in concert or show redundancy with one and another. We used siRNA technology to assess the effect of multiple ablations of documented pro-apoptotic p53 target genes (PPG) in the colorectal cancer cell line HCT116 and generated mice deficient in both of the extrinsic and intrinsic PPGs genes Dr5 and Puma following treatment with chemotherapeutics and ionizing radiation. DR5, Fas, Bax, Bad, Puma and Bnip3L were induced by 5-FU and adriamycin (ADR) in HCT116 cells in a p53-dependent manner. The resulting caspase 3/7 activity in HCT116 cells following treatment were suppressed by ablated expression of the PPGs in the extrinsic as well as the intrinsic pathway. To our surprise, knocking-down any of the PPGs concomitantly with DR5 did not further inhibit caspase 3/7 activity whereas inhibiting DR5-expression in HCT116Bax knockdown (kd) and HCT116Fas kd did, suggesting that these genes act downstream or in synergy with DR5. This was supported by our in vivo observations, since Puma and Dr5 were equally efficient in protecting cells of the spleen from sub-lethal radiation-induced apoptosis but less effective compared with irradiated p53-/- mice. To our surprise, Dr5-/-; Puma-/- mice did not show additive protection from radiation-induced apoptosis in any of the investigated organs. Our data indicates that the intrinsic pathway may rely on extrinsic signals to promote cell death in a cell- and tissue-dependent manner following DNA damage. Furthermore, p53 must rely on mechanisms independent of DR5 and PUMA to initiate apoptosis following γ-radiation in the spleen and thymus in vivo.  相似文献   

17.
Biodegradable polymer nanoparticle drug delivery systems provide targeted drug delivery, improved pharmacokinetic and biodistribution, enhanced drug stability and fewer side effects. These drug delivery systems are widely used for delivering cytotoxic agents. In the present study, we synthesized GC/5-FU nanoparticles by combining galactosylated chitosan (GC) material with 5-FU, and tested its effect on liver cancer in vitro and in vivo. The in vitro anti-cancer effects of this sustained release system were both dose- and time-dependent, and demonstrated higher cytotoxicity against hepatic cancer cells than against other cell types. The distribution of GC/5-FU in vivo revealed the greatest accumulation in hepatic cancer tissues. GC/5-FU significantly inhibited tumor growth in an orthotropic liver cancer mouse model, resulting in a significant reduction in tumor weight and increased survival time in comparison to 5-FU alone. Flow cytometry and TUNEL assays in hepatic cancer cells showed that GC/5-FU was associated with higher rates of G0–G1 arrest and apoptosis than 5-FU. Analysis of apoptosis pathways indicated that GC/5-FU upregulates p53 expression at both protein and mRNA levels. This in turn lowers Bcl-2/Bax expression resulting in mitochondrial release of cytochrome C into the cytosol with subsequent caspase-3 activation. Upregulation of caspase-3 expression decreased poly ADP-ribose polymerase 1 (PARP-1) at mRNA and protein levels, further promoting apoptosis. These findings indicate that sustained release of GC/5-FU nanoparticles are more effective at targeting hepatic cancer cells than 5-FU monotherapy in the mouse orthotropic liver cancer mouse model.  相似文献   

18.
In this study, we investigated whether gastric cancer with hypoxia-induced resistance to 5-fluorouracil (5-FU) could be re-sensitized following treatment with low-dose dichloroacetate (DCA), an inhibitor of the glycolytic pathway. The expression profiles of hypoxia-inducible factor-1α (HIF-1α) and pyruvate dehydrogenase kinase-1 (PDK-1) were analyzed in tissues from 10 patients with gastric cancer who had different responses to adjuvant 5-FU treatment. For the in vitro assays, cell viability and apoptosis were evaluated with and without treatment with 20 mM DCA in the AGS and MKN45 cell lines, as well as in PDK1 knockdown cell lines. The expression levels of HIF-1α and PDK-1 were both elevated in the tumor tissues relative to the normal gastric tissues of most patients who showed recurrence after adjuvant 5-FU treatment. Cellular viability tests showed that these cell lines had a lower sensitivity to 5-FU under hypoxic conditions compared to normoxic conditions. Moreover, the addition of 20 mM DCA only increased the sensitivity of these cells to 5-FU under hypoxic conditions, and the resistance to 5-FU under hypoxia was also attenuated in PDK1 knockdown cell lines. In conclusion, DCA treatment was able to re-sensitize gastric cancer cells with hypoxia-induced resistance to 5-FU through the alteration of glucose metabolism.  相似文献   

19.
Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.  相似文献   

20.
Bystander immune activation by chemotherapy has recently gained extensive interest and provided support for the clinical use of chemotherapeutic agents in combination with immune enhancers. The CD40 ligand (CD40L; CD154) is a potent regulator of the anti-tumor immune response and recombinant adenovirus (RAd)-mediated CD40L gene therapy has been effective in various cancer models and in man. In this study we have assessed the combined effect of local RAd-CD40L and 5-fluorouracil (5-FU) administration on a syngeneic MB49 mouse bladder tumor model. Whereas MB49 cells implanted into immunocompetent mice responded poorly to RAd-CD40L or 5-FU alone, administration of both agents dramatically decreased tumor growth, increased survival of the mice and induced systemic MB49-specific immunity. This combination treatment was ineffective in athymic nude mice, highlighting an important role for T cell mediated anti-tumor immunity for full efficacy. 5-FU up-regulated the expression of Fas and immunogenic cell death markers in MB49 cells and cytotoxic T lymphocytes from mice receiving RAd-CD40L immunotherapy efficiently lysed 5-FU treated MB49 cells in a Fas ligand-dependent manner. Furthermore, local RAd-CD40L and 5-FU administration induced a shift of myeloid-derived suppressor cell phenotype into a less suppressive population. Collectively, these data suggest that RAd-CD40L gene therapy is a promising adjuvant treatment to 5-FU for the management of bladder cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号