首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Three decades ago, James W. Putney Jr. conceptualized the idea of store-operated calcium entry (SOCE) to explain how depletion of endoplasmic reticulum (ER) Ca2+ stores evokes Ca2+ influx across the plasma membrane. Since the publication of this highly influential idea, it is now established that SOCE is universal among non-excitable and probably even many types of excitable cells, and contributes to numerous effector functions impacting immunity, muscle contraction, and brain function. The molecules encoding SOCE, the STIM and Orai proteins, are now known and our understanding of how this pathway is activated in response to ER Ca2+ store depletion has advanced significantly. In this review, we summarize the current knowledge of how Orai1 channels are activated by STIM1, focusing on recent work supporting a hydrophobic gating mechanism for the opening of the Orai1 channel pore.  相似文献   

3.
The mouse hippocampal cell line HT22 is an excellent model for studying the consequences of endogenous oxidative stress. Addition of extracellular glutamate depletes the cells of glutathione (GSH) by blocking the glutamate−cystine antiporter system xc. GSH is the main antioxidant in neurons and its depletion induces a well-defined program of cell death called oxytosis, which is probably synonymous with the iron-dependent form of non-apoptotic cell death termed ferroptosis. Oxytosis is characterized by an increase of reactive oxygen species and a strong calcium influx preceding cell death. We found a significant reduction in store-operated calcium entry (SOCE) in glutamate-resistant HT22 cells caused by downregulation of the Ca2+ channel ORAI1, but not the Ca2+ sensors STIM1 or STIM2. Pharmacological inhibition of SOCE mimicked this protection similarly to knockdown of ORAI1 by small interfering RNAs. Long-term calcium live-cell imaging after induction of the cell death program showed a specific reduction in Ca2+-positive cells by ORAI1 knockdown. These results suggest that dysregulated Ca2+ entry through ORAI1 mediates the detrimental Ca2+ entry in programmed cell death induced by GSH depletion. As this detrimental Ca2+ influx occurs late in the course of the cell death program, it might be amenable to therapeutic intervention in diseases caused by oxidative stress.  相似文献   

4.
    
Store Operated Ca2+ Entry (SOCE) mediated by Orai channels is a ubiquitous Ca2+ influx pathway that regulates several cellular functions. We have earlier reported that Orai3, the mammalian specific Orai1 homolog, plays a critical role in breast cancer progression. More recently, Orai3 was demonstrated to regulate prostate and lung tumorigenesis. Although the tumorigenic potential of Orai3 is associated with increase in its expression, the molecular machinery regulating its expression remains largely unexplored. Here, by performing extensive bioinformatics analysis and functional studies, we identify and characterize micro-RNAs (miRNAs) that regulate Orai3 expression and function. We demonstrate that miR18a and miR18b positively regulate Orai3 whereas miR34a represses Orai3 expression and function. All these miRs exert their effect on Orai3 by virtue of their direct action on Orai3 3′UTR. These miRs provide novel opportunities for targeting Orai3 for better management of cancer. This study further opens up the possibility of targeting specific Orai homologs by different miRs in tissue and disease specific context.  相似文献   

5.
Store-operated Ca2+ entry (SOCE) from the extracellular space plays a critical role in agonist-mediated Ca2+ signaling in non-excitable cells. Here we show that SOCE is enhanced in COS-7 cells treated with staurosporine (ST), a protein kinase inhibitor. In COS-7 cells, stimulation with ATP induced Ca2+ release from intracellular Ca2+ stores and Ca2+ entry from the extracellular space. Ca2+ release was not affected by treatment with ST, but Ca2+ entry continued in the ST-treated cells even after the removal of ATP. ST did not inhibit Ca2+ sequestration into Ca2+ stores. The Ca2+ entry induced by cyclopiazonic acid (CPA), a reversible ER Ca2+ pump inhibitor, was maintained in ST-treated cells even after the removal of CPA, but was not maintained in the control cells. The sustained Ca2+ entry in ST-treated cells was completely attenuated by the SOCE inhibitors, La3+ and 2-APB. The large increase in Ca2+ entry produced in the cells co-expressing Venus-Orai1 and STIM1-mKO1 was stabilized with ST treatment, and confocal imaging of these cells suggested that the complex between Orai1 and STIM1 did not completely dissociate following the refilling of Ca2+ stores. These results show that SOCE remains activated even after the refilling of Ca2+ stores in ST-treated cells and that the effect of ST on SOCE may result from a stabilization of the Orai1–STIM1 interaction.  相似文献   

6.
Capiod T 《Biochimie》2011,93(12):2075-2079
Both increases in the basal cytosolic calcium concentration ([Ca2+]cyt) and [Ca2+]cyt transients play major roles in cell cycle progression, cell proliferation and division. Calcium transients are observed at various stages of cell cycle and more specifically during late G1 phase, before and during mitosis. These calcium transients are mainly due to calcium release and reuptake by the endoplasmic reticulum (ER) and are observed over periods of hours in oocytes and mammalian cells. Calcium entry sustains the ER Ca2+ load and thereby helps to maintain these calcium transients for such a long period. Calcium influx also controls cell growth and proliferation in several cell types. Various calcium channels are involved in this process and the tight relation between the expression and activity of cyclins and calcium channels also suggests that calcium entry may be needed only at particular stages of the cell cycle. Consistent with this idea, the expression of l-type and T-type calcium channels and SOCE amplitude fluctuate along the cell cycle. But, as calcium influx regulates several other transduction pathways, the presence of a specific connection to trigger activation of proliferation and cell division in mammalian cells will be discussed in this review.  相似文献   

7.
Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD(+), TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair.  相似文献   

8.
The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells'' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD.  相似文献   

9.
    
Defective ER/SR-cytosol Ca2+ cycling is associated with increased ER stress, pathological heart conditions and muscular defects. Within the SR, ryanodine receptor 2 (RyR2) is required for excitation/contraction coupling. Ca2+ release from the SR is counterbalanced by K+ influx through trimeric intracellular cation (TRIC) channels to maintain ER/SR polarity. New functions of TRIC channels have been discovered.  相似文献   

10.
11.
The assembly of STIM1 protein puncta near endoplasmic reticulum–plasma membrane (ER-PM) junctions is required for optimal activation of store-operated channels (SOC). The mechanisms controlling the translocation of STIM1 puncta to ER-PM junctions remain largely unknown.  相似文献   

12.
Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin.  相似文献   

13.
Arachidonic acid release and the effect of phospholipase inhibitors on various types of cell injuries and death to rabbit renal proximal tubule suspensions were determined. Proximal tubules were exposed to the mitochondrial inhibitor antimycin A (0.1 μM), the protonophore carbonyl cyanide ρ-trifluoromethoxypheitylhydrazone (1 μM FCCP), the oxidant tertbutyl hydroperoxide (0.5 mM TBHP), or the calcium ionophore ionomycin (5 μM) in the absence or presence of the putative phospholipase inhibitors dibucaine, mepacrine, chlorpromazine, or U-26384. The phospholipase inhibitors had no effect on the proximal tubule lactate dehydrogenase (LDH) release (a marker of cell death) produced by FCCP, antimycin A, or ionomycin after 1,2, or 2 hours of exposure, respectively. Only dibucaine and mepacrine decreased LDH release in TBHP-treated proximal tubules without decreasing TBHP-induced lipid peroxidation. Antimycin A and ionomycin did not release arachidonic acid from proximal tubules prelabeled with [1-14C] arachidonic acid. In contrast, TBHP released arachidonic acid from proximal tubules prior to the onset of cell death, and dibucaine and mepacrine decreased the TBHP-induced release. Thus, phospholipase inhibitors were cytoprotective in those injuries that produced arachidonic acid release. These results suggest that arachidonic acid release and phospholipase A2 activation play a contributing role in oxidant-induced renal proximal tubule cell injury and death but not in mitochondrial inhibitor- or calcium ionophore-induced proximal tubule cell injury and death.  相似文献   

14.
    
  相似文献   

15.
16.
Orai1 and STIM1 have been identified as the main determinants of the store-operated Ca2+ entry (SOCE). Their specific roles in SOCE and their molecular interactions have been studied extensively following heterologous overexpression or molecular knockdown and extrapolated to the endogenous processes in naïve cells. Using molecular and imaging techniques, we found that variation of expression levels of Orai1 or STIM1 can significantly alter expression and role of some endogenous regulators of SOCE. Although functional inhibition of Ca2+-independent phospholipase A2 β (iPLA2β or PLA2g6A), or depletion of plasma membrane cholesterol caused a dramatic loss of endogenous SOCE in HEK293 cells, these effects were attenuated significantly when either Orai1 or STIM1 were overexpressed. Molecular knockdown of iPLA2β impaired SOCE in both control cells and cells overexpressing STIM1. We also discovered important cross-talk between expression of Orai1 and a specific plasma membrane variant of iPLA2β but not STIM1. These data confirm the role of iPLA2β as an essential mediator of endogenous SOCE and demonstrate that its physiological role can be obscured by Orai1 and STIM1 overexpression.  相似文献   

17.
    
Our recent work identified store-operated Ca2+ entry (SOCE) as the critical Ca2+ source required for the induction of human myoblast differentiation (Darbellay, B., Arnaudeau, S., König, S., Jousset, H., Bader, C., Demaurex, N., and Bernheim, L. (2009) J. Biol. Chem. 284, 5370–5380). The present work indicates that STIM2 silencing, similar to STIM1 silencing, reduces myoblast SOCE amplitude and differentiation. Because myoblasts in culture can be induced to differentiate into myotubes, which spontaneously contract in culture, we used the same molecular tools to explore whether the Ca2+ mechanism of excitation-contraction coupling also relies on STIM1 and STIM2. Live cell imaging of early differentiating myoblasts revealed a characteristic clustering of activated STIM1 and STIM2 during the first few hours of differentiation. Thapsigargin-induced depletion of endoplasmic reticulum Ca2+ content caused STIM1 and STIM2 redistribution into clusters, and co-localization of both STIM proteins. Interaction of STIM1 and STIM2 was revealed by a rapid increase in fluorescence resonance energy transfer between CFP-STIM1 and YFP-STIM2 after SOCE activation and confirmed by co-immunoprecipitation of endogenous STIM1 and STIM2. Although both STIM proteins clearly contribute to SOCE and are required during the differentiation process, STIM1 and STIM2 are functionally largely redundant as overexpression of either STIM1 or STIM2 corrected most of the impact of STIM2 or STIM1 silencing on SOCE and differentiation. With respect to excitation-contraction, we observed that human myotubes rely also on STIM1 and STIM2 to refill their endoplasmic reticulum Ca2+-content during repeated KCl-induced Ca2+ releases. This indicates that STIM2 is a necessary partner of STIM1 for excitation-contraction coupling. Thus, both STIM proteins are required and interact to control SOCE during human myoblast differentiation and human myotube excitation-contraction coupling.  相似文献   

18.
Niemann-Pick type C1 (NPC1) is a late endosomal transmembrane protein, which, together with NPC2 in the endosome lumen, mediates the transport of endosomal cholesterol to the plasma membrane and endoplasmic reticulum. Loss of function of NPC1 or NPC2 leads to cholesterol accumulation in late endosomes and causes neuronal dysfunction and neurodegeneration. Recent studies indicate that cholesterol also accumulates in mitochondria of NPC1-deficient cells and brain tissue and that NPC1 deficiency leads to alterations in mitochondrial function and energy metabolism. Here, we have investigated the effects of increased mitochondrial cholesterol levels on energy metabolism, using RNA interference to deplete Chinese hamster ovary cells of NPC1 alone or in combination with MLN64, which mediates endosomal cholesterol transport to mitochondria. Mitochondrial cholesterol levels were also altered by depletion of NPC2 in combination with the expression of NPC2 mutants. We found that the depletion of NPC1 increased lactate secretion, decreased glutamine-dependent mitochondrial respiration, and decreased ATP transport across mitochondrial membranes. These metabolic alterations did not occur when transport of endosomal cholesterol to mitochondria was blocked. In addition, the elevated mitochondrial cholesterol levels in NPC1-depleted cells and in NPC2-depleted cells expressing mutant NPC2 that allows endosomal cholesterol trafficking to mitochondria were associated with increased expression of the antioxidant response factor Nrf2. Antioxidant treatment not only prevented the increase in Nrf2 mRNA levels but also prevented the increased lactate secretion in NPC1-depleted cells. These results suggest that mitochondrial cholesterol accumulation can increase oxidative stress and in turn cause increased glycolysis to lactate and other metabolic alterations.  相似文献   

19.
The events leading to the activation of store-operated Ca(2+) entry (SOCE) involve Ca(2+) depletion of the endoplasmic reticulum (ER) resulting in translocation of the transmembrane Ca(2+) sensor protein, stromal interaction molecule 1 (STIM1), to the junctions between ER and the plasma membrane where it binds to the Ca(2+) channel protein Orai1 to activate Ca(2+) influx. Using confocal and total internal reflection fluorescence microscopy, we studied redistribution kinetics of fluorescence-tagged STIM1 and Orai1 as well as SOCE in insulin-releasing β-cells and glucagon-secreting α-cells within intact mouse and human pancreatic islets. ER Ca(2+) depletion triggered accumulation of STIM1 puncta in the subplasmalemmal ER where they co-clustered with Orai1 in the plasma membrane and activated SOCE. Glucose, which promotes Ca(2+) store filling and inhibits SOCE, stimulated retranslocation of STIM1 to the bulk ER. This effect was evident at much lower glucose concentrations in α- than in β-cells consistent with involvement of SOCE in the regulation of glucagon secretion. Epinephrine stimulated subplasmalemmal translocation of STIM1 in α-cells and retranslocation in β-cells involving raising and lowering of cAMP, respectively. The cAMP effect was mediated both by protein kinase A and exchange protein directly activated by cAMP. However, the cAMP-induced STIM1 puncta did not co-cluster with Orai1, and there was no activation of SOCE. STIM1 translocation can consequently occur independently of Orai1 clustering and SOCE.  相似文献   

20.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号