首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Wu  Leiming  Guo  Jun  Dai  Xiaoyu  Xiang  Yuanjiang  Fan  Dianyuan 《Plasmonics (Norwell, Mass.)》2018,13(1):281-285
Plasmonics - Compared with surface plasmon resonance (SPR) biosensor, guided-wave surface plasmon resonance (GWSPR) biosensor has a higher sensitivity. In order to further enhance the sensitivity...  相似文献   

2.
Plasmonics - A surface plasmon resonance (SPR) biosensor based on a graphene nanoribbon array in a microfluidic flow cell operating in a flow-over format is studied. The optical response of the...  相似文献   

3.
Gold–silver bimetallic film configuration is brought forward to realize surface plasmon resonance imaging (SPRI) biosensor with the virtues of both high sensitivity and chemical stability. The theoretical calculation is adopted to optimize the thicknesses of the metal films, and bimetallic film configuration with high refractive index sensitivity and a good linearity between reflectivity and refractive index is presented. Then, the property of the detection system is discussed. The results show that in comparison to most commercial SPRI biosensors which use single gold films, the sensitivity and molecule detection ability of the gold–silver bimetallic film configuration can be improved to a great extent. For the substrate of BAK3 glass used in this paper, the sensitivity enhancement reaches as high as 80%, which makes it a much better choice for SPRI biosensing applications.  相似文献   

4.
The localized surface plasmon resonances of multilayered nanostructures are studied using finite difference time domain simulations and plasmon hybridization method. Concentric metal–dielectric–metal (MDM) structure with metal core and nanoshell separated by a thin dielectric layer exhibits a strong coupling between the core and nanoshell plasmon resonance modes. The coupled resonance mode wavelengths show dependence on the dielectric layer thickness and composition of core and outer layer metal. The aluminum-based MDM structures show lower plasmon wavelength compared with Ag- and Au-based MDM nanostructures. The calculated refractive index sensitivity (RIS) factor is in the order Ag–Air–Ag>Au–Air–Au>Al–Air–Al for monometallic multilayered nanostructures. Bimetallic multilayered nanostructures support strong and tunable plasmon resonance wavelengths as well as high RIS factor of 510 nm/refractive index unit (RIU) and 470 nm/RIU for Al–Air–Au and Ag-Air-Au, respectively. The MDM structures not only exhibit higher index sensitivity but also cover a wide ultraviolet–near-infrared wavelengths, making these structures very promising for index sensing, biomolecule sensing, and surface-enhanced Raman spectroscopy.  相似文献   

5.

In this report, a novel D-shaped long-range surface plasmon resonance (LRSPR) fiber base sensor has been introduced. The demonstration of proposed sensor involves two D-shaped silver-coated models to study the sensitivity responses. The entire study with the constructed models is based on a single-mode fiber. The models are multilayered consisting of metal, dielectric, and analyte as separate layers. Silver (Ag) and magnesium fluoride (MgF2) strips are used as metal and dielectric layers respectively. The constituency of analyte as an interface excellently standardized the models for sensitivity detection. In this report, a large range of analyte refractive indices (RI) which varies from 1.33 to 1.38 is appraised for the proposed models to characterize the sensitivity. The entire context is encompassed by the wavelength region from 450 to 850 nm with an interval of 20 nm. Sensitivities in this report are measured based on the analyte position from the core and metal for both models. For each of the two models, the analyte is placed as the top layer. RIs of the applied metal (Ag) are measured using the Drude-Lorentz formula. The simulated sensitivities for model-1 and model-2 vary from 6.3?×?103 nm/RIU to 8.7?×?103 nm/RIU.

  相似文献   

6.
Plasmonics - In the present communication, a fiber optic biosensor based on surface plasmon resonance (SPR) phenomenon, having bilayers of Ag-Pt with graphene as a sensing layer, is presented....  相似文献   

7.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

8.
Plasmonics - Precise detection of volatile organic compounds (VOCs) using high-sensitivity fiber-optic probes is highly desirable for rapid screening in the fields of medicine and food processing....  相似文献   

9.
Wang  Shutao  Ma  Wenbo  Cheng  Qi  Liu  Na  Lu  Yuhong  Wu  Xuanrui  Xiang  Jingliang 《Plasmonics (Norwell, Mass.)》2022,17(1):119-129
Plasmonics - This work proposes a novel multi-channel photonic crystal fiber (PCF) based on surface plasmon resonance (SPR) technique where Au-Ta2O5 layer and Ag-Ta2O5 layer are selected as...  相似文献   

10.
For the development of efficient anti-cancer therapeutics against the HER receptor family it is indispensable to understand the mechanistic model of the HER receptor activation upon ligand binding. Due to its high complexity the binding mode of Heregulin 1 beta (HRG1β) with its receptor HER3 is so far not understood. Analysis of the interaction of HRG1β with surface immobilized HER3 extracellular domain by time-resolved Surface Plasmon Resonance (SPR) was so far not interpretable using any regular analysis method as the interaction was highly complex. Here, we show that Interaction Map (IM) made it possible to shed light on this interaction. IM allowed deciphering the rate limiting kinetic contributions from complex SPR sensorgrams and thereby enabling the extraction of discrete kinetic rate components from the apparently heterogeneous interactions. We could resolve details from the complex avidity-driven binding mode of HRG1β with HER3 by using a combination of SPR and IM data. Our findings contribute to the general understanding that a major conformational change of HER3 during its activation is induced by a complex sequential HRG1β docking mode.  相似文献   

11.
Crystal of Russell Viper venom phospholipase A(2) complexed with an isoquinoline alkaloid, berberine from a herbaceous plant Cardiospermum halicacabum, was prepared and its structure was solved by X-ray crystallography. The crystal diffracted up to 1.93? and the structure solution clearly located the position of berberine in the active site of the enzyme. Two hydrogen bonds, one direct and the other water mediated, were formed between berberine and the enzyme. Gly 30 and His 48 made these two hydrogen bonds. Additionally, the hydrophobic surface of berberine made a number of hydrophobic contacts with side chains of neighboring amino acids. Surface Plasmon Resonance studies revealed strong binding affinity between berberine and phospholipase A(2). Enzyme inhibition studies proved that berberine is a competitive inhibitor of phospholipase A(2). It was inferred that the isoquinoline alkaloid, berberine, is a potent natural inhibitor of phospholipaseA(2).  相似文献   

12.
We numerically investigate the buried effects of surface plasmon resonance (SPR) modes for the periodic silver-shell nanopearl dimer (PSSND) array and their solid counterparts with different buried depths in a silica substrate by means of finite element method with three-dimensional calculations. The investigated PSSND array is an important novel geometry for plasmonic metal nanoparticles (MNPs), combining the highly attractive nanoscale optical properties of both metallic nanoshell and cylindrical pore filled with a dielectric. Numerical results for SPR modes corresponding to the effects of different illumination wavelengths, absorption spectra, pore–dielectric, electric field components and total field distribution, charge density distribution, and the model of the induced local field or an applied field of the PSSND array are reported as well. It can be found that the buried MNPs with cylindrical pore filled with a dielectric in a substrate exhibit tunable SPR modes corresponding to the bonding and antibonding modes that are not observed for their solid counterparts.  相似文献   

13.
Orotidine 5′-monophosphate decarboxylase (ODCase) accelerates the decarboxylation of its substrate by 17 orders of magnitude. One argument brought forward against steric/electrostatic repulsion causing substrate distortion at the carboxylate substituent as part of the catalysis has been the weak binding affinity of the decarboxylated product (UMP). The crystal structure of the UMP complex of ODCase at atomic resolution (1.03 Å) shows steric competition between the product UMP and the side chain of a catalytic lysine residue. Surface plasmon resonance analysis indicates that UMP binds 5 orders of magnitude more tightly to a mutant in which the interfering side chain has been removed than to wild-type ODCase. These results explain the low affinity of UMP and counter a seemingly very strong argument against a contribution of substrate distortion to the catalytic reaction mechanism of ODCase.  相似文献   

14.
In vitro cell-based assays are widely used during the drug discovery and development process to test the biological activity of new drugs. Most of the commonly used cell-based assays, however, lack the ability to measure in real-time or under dynamic conditions (e.g. constant flow). In this study a multi-parameter surface plasmon resonance approach in combination with living cell sensing has been utilized for monitoring drug-cell interactions in real-time, under constant flow and without labels. The multi-parameter surface plasmon resonance approach, i.e. surface plasmon resonance angle versus intensity plots, provided fully specific signal patterns for various cell behaviors when stimulating cells with drugs that use para- and transcellular absorption routes. Simulated full surface plasmon resonance angular spectra of cell monolayers were compared with actual surface plasmon resonance measurements performed with MDCKII cell monolayers in order to better understand the origin of the surface plasmon resonance signal responses during drug stimulation of cells. The comparison of the simulated and measured surface plasmon resonance responses allowed to better understand and provide plausible explanations for the type of cellular changes, e.g. morphological or mass redistribution in cells, that were induced in the MDCKII cell monolayers during drug stimulation, and consequently to differentiate between the type and modes of drug actions. The multi-parameter surface plasmon resonance approach presented in this study lays the foundation for developing new types of cell-based tools for life science research, which should contribute to an improved mechanistic understanding of the type and contribution of different drug transport routes on drug absorption.  相似文献   

15.
16.
Two previously obtained, full-size, fully human antibodies that reversibly bind the active form of an enzyme belonging to the subtype EC 3.2.1, which is used for substitutive enzymatic therapy in lysosomal storage diseases, have been characterized by surface plasmon resonance and biolayer interferometry methods. It was shown under normal physiological conditions that the designed antibodies specifically bound with the antigen (KD ~ 10–8 M) and rapidly dissociated at neutral pH in 60% ethylene glycol while leaving the enzymatic activity unchanged. Dan ue to their properties, the developed antibodies can be used in industry as affinity ligand in the isolation of therapeutic substances of the enzyme.  相似文献   

17.
It is crucial to reveal the plasmon peak sensitivity responses of individual Cu nanoparticles, which provide another kind of plasmon sensors besides Au/Ag ones. In this paper, such responses to both the bulk and local refractive index (RI) of individual Cu nanosphere sensors are theoretically investigated by Mie theory. Both of them are revealed to be quadratic. The underlying mechanisms are elucidated well in terms of Rayleigh approximation. The corresponding sensitivity factors are demonstrated to increase with the RI of the nanospheres’ bulk and local surrounding mediums linearly. The plasmon peak sensitivities and sensitivity factors of experimentally encountered Cu@Cu2O core–shell nanoparticles are calculated as well, which reveals that appropriate dielectric encapsulations to Cu nanospheres are favored for their potential plasmonic sensing and detection applications.  相似文献   

18.
Members of the K+ channel-interacting protein (KChIP) family bind the distal N termini of members of the Shal subfamily of voltage-gated K+ channel (Kv4) pore-forming (α) subunits to generate rapidly activating, rapidly inactivating neuronal A-type (IA) and cardiac transient outward (Ito) currents. In heterologous cells, KChIP co-expression increases cell surface expression of Kv4 α subunits and Kv4 current densities, findings interpreted to suggest that Kv4·KChIP complex formation enhances forward trafficking of channels (from the endoplasmic reticulum or the Golgi complex) to the surface membrane. The results of experiments here, however, demonstrate that KChIP2 increases cell surface Kv4.2 protein expression (∼40-fold) by an order of magnitude more than the increase in total protein (∼2-fold) or in current densities (∼3-fold), suggesting that mechanisms at the cell surface regulate the functional expression of Kv4.2 channels. Additional experiments demonstrated that KChIP2 decreases the turnover rate of cell surface Kv4.2 protein by inhibiting endocytosis and/or promoting recycling. Unexpectedly, the experiments here also revealed that Kv4.2·KChIP2 complex formation stabilizes not only (total and cell surface) Kv4.2 but also KChIP2 protein expression. This reciprocal protein stabilization and Kv4·KChIP2 complex formation are lost with deletion of the distal (10 amino acids) Kv4.2 N terminus. Taken together, these observations demonstrate that KChIP2 differentially regulates total and cell surface Kv4.2 protein expression and Kv4 current densities.  相似文献   

19.
Plasmonics - Raman spectroscopy (RS) is a modern scientific analytic fingerprint technique that detects, examines, and analyzes the constituent chemical composition of various substances...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号