首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Iran is an area of particular interest for investigating goat diversity. Archaeological remains indicate early goat domestication (about 10 000 years ago) in the Iranian Zagros Mountains as well as in the high Euphrates valley and southeastern Anatolia. In addition, mitochondrial DNA data of domestic goats and wild ancestors (C. aegagrusor bezoar) suggest a pre-domestication management of wild populations in southern Zagros and central Iranian Plateau. In this study genetic diversity was assessed in seven Iranian native goat breeds, namely Markhoz, Najdi, Taleshi, Khalkhali, Naini, native Abadeh and Turki-Ghashghaei. A total of 317 animals were characterized using 14 microsatellite loci. Two Pakistani goat populations, Pahari and Teddy, were genotyped for comparison.

Results

Iranian goats possess a remarkable genetic diversity (average expected heterozygosity of 0.671 across loci, 10.7 alleles per locus) mainly accounted for by the within-breed component (GST = 5.9%). Positive and highly significant FIS values in the Naini, Turki-Ghashghaei, Abadeh and Markhoz breeds indicate some level of inbreeding in these populations. Multivariate analyses cluster Iranian goats into northern, central and western groups, with the western breeds relatively distinct from the others. Pakistani breeds show some relationship with Iranian populations, even if their position is not consistent across analyses. Gene flow was higher within regions (west, north, central) compared to between regions but particularly low between the western and the other two regions, probably due to the isolating topography of the Zagros mountain range. The Turki-Ghashghaei, Najdi and Abadeh breeds are reared in geographic areas where mtDNA provided evidence of early domestication. These breeds are highly variable, located on basal short branches in the neighbor-joining tree, close to the origin of the principal component analysis plot and, although highly admixed, they are quite distinct from those reared on the western side of the Zagros mountain range.

Conclusions

These observations call for further investigation of the nuclear DNA diversity of these breeds within a much wider geographic context to confirm or re-discuss the current hypothesis (based on maternal lineage data) of an almost exclusive contribution of the eastern Anatolian bezoar to the domestic goat gene pool.  相似文献   

2.
Nguni goats and Boer goats, which are farmed together in the savannas of the Eastern Cape Province, depend on the same feed resources. The feeding height intake rates and preferences of one of their most preferred browse species, Grewia occidentalis L. (Tiliaceae), were studied in order to indirectly determine resource partitioning between these goat breeds on the basis of feeding height. The two hypotheses tested were that taller Boer goats feed at higher levels than do Nguni goats and that both breeds have feeding height preferences that are related to differences in intake rates. Four individuals of each breed were fed branches attached to a height foraging board. The two breeds showed no particular height preference in either season. Bite rates varied with feeding height, while bite sizes and intake rates increased with feeding height. Boer goats had lower bite rates compared to Nguni goats, although both breeds achieved similar bite sizes and intake rates. Bites sizes and intake rates for both breeds were higher in summer than in winter, possibly because more browse biomass was available per branch in summer than in winter since G. occidentalis is deciduous. There was no evidence to support that feeding height preference was related to differences in intake rates. It is concluded that Boer goats may compete for forage resources during times of resource limitation. Thus, Nguni goats might be a more favourable breed in semi-arid savannas because of their smaller body-size and, therefore, absolute nutrient requirements as well as their better reproductive performance compared to Boer goats.  相似文献   

3.
Susceptibility/resistance to scrapie in sheep and goats is influenced by host prion protein gene ( PRNP ) genotype. In this study, we report the analysis of prion protein gene polymorphisms in 137 goats of two Moroccan populations: D'man and Chaouni. We found seven previously described amino acid polymorphisms at codons 37, 127, 137, 142, 154, 222 and 240, as well as three known silent mutations. In addition, we identified three new allelic variants: 101R and 139S in D'man goats and 145D in D'man and Chaouni individuals. The high frequency of the resistant allele 154H could offer genetic protection against the disease to the analysed animals. A total of 12 haplotypes and 28 genotypes were found, the distribution of which shows significant differences between both groups. Moreover, haplotype frequencies were compared with bibliographic data showing that the haplotype distribution of PRNP in Moroccan populations is genetically similar to Southern Italian and Greek goats.  相似文献   

4.
《Small Ruminant Research》2003,47(3):171-181
Several local strains and populations of goats distinguished by morphogenetic and performance characteristics are kept by goat breeders in different natural climatic regions of Mongolia, namely Bayandelger, Ulgii Red, Erchim Black, Dorgon and Zavkhan Buural. The genetic relationships among eight native goat populations in Mongolia at 33 biochemical genetic loci was assessed. A total of 440 animals in eight regional zones were studied. Twelve loci, i.e. the serum transferrin, serum amylase, serum alkaline phosphatase, serum prealbumin-3, cell esterase-D, hemoglobin (Hb) β, hemoglobin (Hb) α-II, cell peptidase-B, cell tetrazolium oxidase, cell esterase-1, cell esterase-2 and cell catalase loci, were found to be polymorphic. The data indicated that Mongolian native goats are not highly differentiated (D=0.0002–0.0038) genetically. To set Mongolian native goats in a larger context, the present data were compared with those on other goat breeds and populations in east and southeast Asia that were previously reported. The average heterozygosity in the Mongolian native goats did not significantly differ from those in other Asian goat populations and breeds. A phylogenetic tree of the gene constitution of the Mongolian native goats and other Asian goat breeds and populations was constructed and revealed that genetically the Mongolian native goats had diverged slightly from the group consisting of Chinese, Japanese, Korean and Indonesian native goats, but markedly from the Indian goat group.  相似文献   

5.
6.
《Small Ruminant Research》2007,68(2-3):93-112
This review, the second in the series on breeding goats for meat production, examines the role of crossbreeding and composite population in improving economically important traits necessary for commercial production of meat goats. In general, the crossbreeding of indigenous goats or established breeds with one or more breeds (Alpine, Beetal, Boer, Jamunapari, Nubian and Saanen) that have demonstrated genetic merit in the performance traits of economical importance rely on specific cross and back cross to achieve increased productivity. Concurrently, the combining of desirable morphological characteristics and production performance of two or more breeds in composite populations has had considerable success in other livestock and poultry species, invigorating interest in the breeding of meat goats for commercial production. There have been a number of studies, world-wide, on evaluation of indigenous goats or established breeds and their crosses, including crossbreds derived from exotic breeds that are summarized. Furthermore, the Boer breed developed in South Africa has considerable potential for rapid and permanent improvement of meat production from goats, and studies on the Boer-sired crossbred offspring are highlighted.  相似文献   

7.
The hierarchical population structure of five, native-Spanish donkey breeds (Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa) has been studied using F-statistics. In addition, nine Moroccan asses and 24 Merens breed horses were included in the analysis. Data came from 15 DNA microsatellites. The analysis shows that Spanish donkeys are substructured at both hierarchical levels studied, among breeds and within breeds (between subpopulations). In the whole population, the deficit of heterozygotes was estimated to be about 21%. The fixation indices corresponding to differences between breeds, subpopulations within breeds, and within subpopulations were estimated to be 6.4%, 3.5% and 3.0%, respectively. The dendrogram obtained shows that the Andaluza and the Moroccan ass form a separate cluster from the northern Spanish breeds (Catalana, Encartaciones, Mallorquina and Zamorana-Leonesa). These groupings coincide with those obtained from historical and archaeological data.  相似文献   

8.
Genetic variability and genetic relationships were investigated among eight Chinese cattle breeds using 12 microsatellite markers. Three hundred and fifty-two alleles were detected and the average number of alleles per locus ranged from 8.33 ± 1.67 in the Jiaxian breed to 21.33 ± 5.60 in the Qinchuan breed with a mean value of 13.91. The total number of alleles per microsatellite ranged from 21 (INRA005, HEL1) to 40 (HEL13), with a mean of 29.33 per locus. The fixation indices at the 12 loci in the eight breeds were very low with a mean of 0.006. A principal components analysis and the construction of a neighborjoining tree showed that these eight Chinese cattle breeds cluster into three groups i.e. the Yanbian andChineseHolstein, theNanyang and Jiaxian, and the four remaining breeds.This clustering agrees with the origin and geographical distributions of these Chinese breeds.  相似文献   

9.
The aim of this study was to investigate the genetic diversity within and among three breeds of sheep: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip®. Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds.  相似文献   

10.
Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in‐depth analysis of the within‐ and between‐breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora‐type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well‐differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the Americas.  相似文献   

11.
The origin of Iberian cattle has been suggested by some authors to be the product of European and north African cattle entrances during the last few thousands of years. However, these hypotheses were mainly based on morphological similarities. This study analyzed 889 unrelated individuals from 15 representative Iberian breeds and 3 French breeds for 16 microsatellite loci. Statistical tests were used to calculate interpopulation genetic distances (D(A)) and principal components analysis (PCA). To visualize the geographical distribution of the genetic differentiation between Iberian cattle breeds, data from the PCA analysis were used to construct synthetic maps. Genetic similarity among neighboring Iberian breeds is mainly caused by gene flow. However, recent demographic fluctuations and reproductive isolation in Alistana, Mirandesa, and Tudanca has increased genetic drift, which may be the main cause for the relatively high differentiation of these populations. The synthetic maps constructed with the first and second PCs revealed (1) a large differentiation between Northern Iberian breeds rather than between more geographically distant breeds, and (2) a clear east-west gradient that may be related with the model of demic diffusion of agriculture. Finally, we detected no strong evidence for an African genetic influence in the Iberian cattle breeds analyzed in this study.  相似文献   

12.
Chen S  Fan B  Liu B  Yu M  Zhao S  Zhu M  Xiong T  Li K 《Biochemical genetics》2006,44(3-4):87-97
Phylogenetic relationships among and genetic variability within 13 Chinese indigenous goat breeds and Boer goat were analyzed using cytochrome b gene sequences. There were 44 variable sites found in a 642 bp sequence, and 46 Cyt b haplotypes were subsequently defined. The phylogeny analysis of haplotypes in combination with goat Cyt b sequences from GenBank shows that Chinese goats are obviously separated from wild goats and might come from Capra aegagrus. Further analysis indicated that indigenous Chinese goats might descend from at least two lineages; most of the individuals analyzed could be classified into lineage A as defined by Luikart, but five other goats were of uncertain lineage. The Tibet plateau is a possible place of origin for Chinese goats. The neighbor-joining tree based on pairwise differences among populations shows that most Tibetan goats, except the Middle Tibet type, cluster closely with North China goats, and then with South China goats. This result confirms that differences in genetic structure exist among goats in different geographic locations. Nucleotide diversity varied among populations. Tibet and North China goats had higher genetic diversity than South China goats. The fixation index (F st=87.72%) suggested that most of the total genetic variation was due to variation within populations. In addition, the results indicate that Cyt b gene sequence information alone might not be enough for phylogeny analysis among breeds within species, as shown by fewer polymorphic sites and lower bootstrap values on the neighbor-joining tree.  相似文献   

13.

Background

The domestic goat is one of the important livestock species of India. In the present study we assess genetic diversity of Indian goats using 17 microsatellite markers. Breeds were sampled from their natural habitat, covering different agroclimatic zones.

Results

The mean number of alleles per locus (NA) ranged from 8.1 in Barbari to 9.7 in Jakhrana goats. The mean expected heterozygosity (He) ranged from 0.739 in Barbari to 0.783 in Jakhrana goats. Deviations from Hardy-Weinberg Equilibrium (HWE) were statistically significant (P < 0.05) for 5 loci breed combinations. The DA measure of genetic distance between pairs of breeds indicated that the lowest distance was between Marwari and Sirohi (0.135). The highest distance was between Pashmina and Black Bengal. An analysis of molecular variance indicated that 6.59% of variance exists among the Indian goat breeds. Both a phylogenetic tree and Principal Component Analysis showed the distribution of breeds in two major clusters with respect to their geographic distribution.

Conclusion

Our study concludes that Indian goat populations can be classified into distinct genetic groups or breeds based on the microsatellites as well as mtDNA information.  相似文献   

14.
Most cashmere goats are found in northern China and Mongolia. They are regarded as precious resources for their production of high quality natural fibre for the textile industry. It was the first time that the genetic diversity and population structure of nine Chinese cashmere populations has been assessed using 14 ISAG/FAO microsatellite markers. In addition, two Iranian populations and one West African goat population were genotyped for comparison. Results indicated that the genetic diversity of Chinese cashmere goats was rich, but less than those of the Iranian goat populations. All pairwise FST values between the Chinese cashmere goat populations reached a highly significant level (P < 0.001), suggesting that they should all be considered as separate breeds. Finally, clustering analysis divided Chinese cashmere goats into at least two clusters, with the Tibetan Hegu goats alone in one cluster. An extensive admixture was detected among the Chinese goat breeds (except the Hegu), which have important implications for breeding management.  相似文献   

15.
An increasing number of studies support the hypothesis that smaller populations face a higher risk of extinction, and declining population sizes are therefore one of the focal points in plant conservation. In small populations, loss of genetic diversity is often related to reduced reproductive fitness. For the rare Dictamnus albus in Central Germany, an earlier study had already confirmed a significant correlation between population size and genetic diversity. In order to assess whether these variables correlate with fitness components, plant height; flower, fruit and seed production; and germination were studied in a total of 11 populations of different size. In the seven populations that were sampled over two consecutive years, differences among populations and among years were tested using a Two-Way ANOVA. Co-linearity among variables was assessed using principal component analysis (PCA), followed by calculating correlations between ordination axes and both population size and genetic diversity. Plant height and flower number were uncorrelated to the other variables and, together with germination, did not show any correlation to either population size or genetic diversity. However, both size and genetic diversity of populations correlated significantly with other PCA axes that reflected reproductive components such as fruit number, seed number, seed fruit ratio, and seed mass. Our results support the idea that reproduction is hampered in small populations and raise concerns over the loss of genetic diversity in D. albus.  相似文献   

16.
The Small East African (SEA) goat are widely distributed in different agro‐ecological zones of Tanzania. We report the genetic diversity, maternal origin, and phylogenetic relationship among the 12 Tanzanian indigenous goat populations, namely Fipa, Songwe, Tanga, Pwani, Iringa, Newala, Lindi, Gogo, Pare, Maasai, Sukuma, and Ujiji, based on the mitochondrial DNA (mtDNA) D‐loop. High haplotype (H d = 0.9619–0.9945) and nucleotide (π = 0.0120–0.0162) diversities were observed from a total of 389 haplotypes. The majority of the haplotypes (n = 334) belonged to Haplogroup A which was consistent with the global scenario on the genetic pattern of maternal origin of all goat breeds in the world. Haplogroup G comprised of 45 haplotypes drawn from all populations except the Ujiji goat population while Haplogroup B with 10 haplotypes was dominated by Ujiji goats (41%). Tanzanian goats shared four haplotypes with the Kenyan goats and two with goats from South Africa, Namibia, and Mozambique. There was no sharing of haplotypes observed between individuals from Tanzanian goat populations with individuals from North or West Africa. The indigenous goats in Tanzania have high genetic diversity defined by 389 haplotypes and multiple maternal origins of haplogroup A, B, and G. There is a lot of intermixing and high genetic variation within populations which represent an abundant resource for selective breeding in the different agro‐ecological regions of the country.  相似文献   

17.
18.
Abstract

Blood plasma from three populations of feral goats (Capra hircus L.) and from five domestic breeds was analysed by polyacrylamide gel electrophoresis. The albumin locus was monomorphic in all samples. The macroglobulin locus was variable but lacked resolution on the gel. The transferrin (Tf) locus was polymorphic. The only two Tf alleles observed (Tf A and Tf B) did not vary from those described by other authors. Gene frequencies of the two Tf alleles showed that one feral population could be distinguished from the other two. Gene frequencies of domestic breeds were variable and showed no definitive pattern. Domestic breed type could not be recognised in the feral populations on the basis of transferrin analysis alone.  相似文献   

19.
Gedebo A  Appelgren M  Bjørnstad A  Tsegaye A 《Hereditas》2006,143(2006):229-235
Amochi (Arisaema schimperianum Schott) is an off-season crop plant in southern Ethiopia, grown during the dry season on residual moisture, for its edible tubers. It has gained importance as a "security crop" especially during the years of moisture stress and food shortage. Amochi is irritating in contact to the skin. Removal of this effect is an important question for breeding. As the first step, however we attempt to establish base line information of its breeding system and genetic variability using AFLPs. The extent of genetic differentiation among 11 populations (96 individuals) of amochi sampled along altitudinal gradients that varied from 1700 to 3200 m a.s.l. was investigated. The populations were classified in to three altitudinal groups: lowland (1700 to 2200 m a.s.l.), central-highland (2201 to 2600 m a.s.l.) and highland (2601 to 3200 m a.s.l.). Polymorphic loci (167) scored from four primer pair combinations, were used for principal component analysis (PCA), and analysis of molecular variance (AMOVA). Both PCA and unweighed pair group with arithmetic mean (UPGMA) clearly differentiated populations into their respective altitude groups, with large genetic distances. AMOVA analysis revealed 70.5%, 16.7% and 12.8% variability between altitude groups, between populations and within populations respectively. Average diversity indices within populations were also low. Since the largest proportion of variation is located between altitude groups, rather than within populations, we suggest future studies on the chemical composition, low irritation, and other desirable traits should consider populations from different altitude ranges.  相似文献   

20.
The genetic structure of eight Spanish autochthonous populations (breeds) of beef cattle were studied from pedigree records. The populations studied were: Alistana and Sayaguesa (minority breeds), Avileña – Negra Ibérica and Morucha ("dehesa" breeds, with a scarce incidence of artificial insemination), and mountain breeds, including Asturiana de los Valles, Asturiana de la Montaña and Pirenaica, with extensive use of AI. The Bruna dels Pirineus breed possesses characteristics which make its classification into one of the former groups difficult. There was a large variation between breeds both in the census and the number of herds. Generation intervals ranged from 3.7 to 5.5 years, tending to be longer as the population size was larger. The effective numbers of herds suggest that a small number of herds behaves as a selection nucleus for the rest of the breed. The complete generation equivalent has also been greatly variable, although in general scarce, with the exception of the Pirenaica breed, with a mean of 3.8. Inbreeding effective population sizes were actually small (21 to 127), especially in the mountain-type breeds. However, the average relatedness computed for these breeds suggests that a slight exchange of animals between herds will lead to a much more favourable evolution of inbreeding. The effective number of founders and ancestors were also variable among breeds, although in general the breeds behaved as if they were founded by a small number of animals (25 to 163).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号