首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PDBsum1 is a standalone set of programs to perform the same structural analyses as provided by the PDBsum web server (https://www.ebi.ac.uk/pdbsum). The server has pages for every entry in the Protein Data Bank (PDB) and can also process user‐uploaded PDB files, returning a password‐protected set of pages that are retained for around 3 months. The standalone version described here allows for in‐house processing and indefinite retention of the results. All data files and images are pre‐generated, rather than on‐the‐fly as in the web version, so can be easily accessed. The program runs on Linux, Windows, and mac operating systems and is freely available for academic use at https://www.ebi.ac.uk/thornton-srv/software/PDBsum1.  相似文献   

2.
The PDBsum web server provides structural analyses of the entries in the Protein Data Bank (PDB). Two recent additions are described here. The first is the detailed analysis of the SARS‐CoV‐2 virus protein structures in the PDB. These include the variants of concern, which are shown both on the sequences and 3D structures of the proteins. The second addition is the inclusion of the available AlphaFold models for human proteins. The pages allow a search of the protein against existing structures in the PDB via the Sequence Annotated by Structure (SAS) server, so one can easily compare the predicted model against experimentally determined structures. The server is freely accessible to all at http://www.ebi.ac.uk/pdbsum.  相似文献   

3.
Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm’s food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm’s response to changes in food availability in the environment.  相似文献   

4.
5.
6.
7.
One of the primary aims of synthetic biology is to (re)design metabolic pathways towards the production of desired chemicals. The fast pace of developments in molecular biology increasingly makes it possible to experimentally redesign existing pathways and implement de novo ones in microbes or using in vitro platforms. For such experimental studies, the bottleneck is shifting from implementation of pathways towards their initial design. Here, we present an online tool called ‘Metabolic Tinker’, which aims to guide the design of synthetic metabolic pathways between any two desired compounds. Given two user-defined ‘target’ and ‘source’ compounds, Metabolic Tinker searches for thermodynamically feasible paths in the entire known metabolic universe using a tailored heuristic search strategy. Compared with similar graph-based search tools, Metabolic Tinker returns a larger number of possible paths owing to its broad search base and fast heuristic, and provides for the first time thermodynamic feasibility information for the discovered paths. Metabolic Tinker is available as a web service at http://osslab.ex.ac.uk/tinker.aspx. The same website also provides the source code for Metabolic Tinker, allowing it to be developed further or run on personal machines for specific applications.  相似文献   

8.
9.
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided.  相似文献   

10.
11.
12.
A common feature of many neurodegenerative diseases is the accumulation of toxic proteins that disrupt vital cellular functions. Degradative pathways such as autophagy play an important protective role in breaking down misfolded and long-lived proteins. Neurons are particularly vulnerable to defects in these pathways, but many of the details regarding the link between autophagy and neurodegeneration remain unclear. We previously found that temperature-sensitive paralytic mutants in Drosophila are enriched for those exhibiting age-dependent neurodegeneration. Here we show that one of these mutants, comatose (comt), in addition to locomotor defects, displays shortened lifespan and progressive neurodegeneration, including loss of dopaminerigic (DA) neurons. comt encodes N-ethyl-maleimide sensitive fusion protein (NSF1), which has a well-documented role in synaptic transmission. However, the neurodegenerative phenotypes we observe in comt mutants do not appear to depend on defects in synaptic transmission, but rather from their inability to sustain autophagy under stress, due at least in part to a defect in trafficking of lysosomal proteases such as cathepsin-L. Conversely, overexpression of NSF1 rescues α-synuclein-induced toxicity of DA neurons in a model of Parkinson’s disease. Our results demonstrate a neuroprotective role for NSF1 that involves mediation of fusion events crucial for degradative pathways such as autophagy, providing greater understanding of cellular dysfunctions common to several neurodegenerative diseases.  相似文献   

13.
14.
Pattern formation during epithelial development requires the coordination of multiple signaling pathways. Here, we investigate the functions of an ovary-enriched miRNA, miR-318, in epithelial development during Drosophila oogenesis. mir-318 maternal loss-of-function mutants were female-sterile and laid eggs with abnormal morphology. Removal of mir-318 disrupted the dorsal–anterior follicle cell patterning, resulting in abnormal dorsal appendages. mir-318 mutant females also produced thin and fragile eggshells due to impaired chorion gene amplification. We provide evidence that the ecdysone signaling pathway activates expression of miR-318 and that miR-318 cooperates with Tramtrack69 to control the switch from endocycling to chorion gene amplification during differentiation of the follicular epithelium. The multiple functions of miR-318 in oogenesis illustrate the importance of miRNAs in maintaining cell fate and in promoting the developmental transition in the female follicular epithelium.  相似文献   

15.
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.  相似文献   

16.
Several helicases function during repair of double-strand breaks and handling of blocked or stalled replication forks to promote pathways that prevent formation of crossovers. Among these are the Bloom syndrome helicase BLM and the Fanconi anemia group M (FANCM) helicase. To better understand functions of these helicases, we compared phenotypes of Drosophila melanogaster Blm and Fancm mutants. As previously reported for BLM, FANCM has roles in responding to several types of DNA damage in preventing mitotic and meiotic crossovers and in promoting the synthesis-dependent strand annealing pathway for repair of a double-strand gap. In most assays, the phenotype of Fancm mutants is less severe than that of Blm mutants, and the phenotype of Blm Fancm double mutants is more severe than either single mutant, indicating both overlapping and unique functions. It is thought that mitotic crossovers arise when structure-selective nucleases cleave DNA intermediates that would normally be unwound or disassembled by these helicases. When BLM is absent, three nucleases believed to function as Holliday junction resolvases—MUS81-MMS4, MUS312-SLX1, and GEN—become essential. In contrast, no single resolvase is essential in mutants lacking FANCM, although simultaneous loss of GEN and either of the others is lethal in Fancm mutants. Since Fancm mutants can tolerate loss of a single resolvase, we were able to show that spontaneous mitotic crossovers that occur when FANCM is missing are dependent on MUS312 and either MUS81 or SLX1.  相似文献   

17.
Moving the nucleus to an intracellular location is critical to many fundamental cell and developmental processes, including cell migration, differentiation, fertilization, and establishment of cellular polarity. Bridges of SUN and KASH proteins span the nuclear envelope and mediate many nuclear positioning events, but other pathways function independently through poorly characterized mechanisms. To identify and characterize novel mechanisms of nuclear migration, we conducted a nonbiased forward genetic screen for mutations that enhanced the nuclear migration defect of unc-84, which encodes a SUN protein. In Caenorhabditis elegans larvae, failure of hypodermal P-cell nuclear migration results in uncoordinated and egg-laying–defective animals. The process of P-cell nuclear migration in unc-84 null animals is temperature sensitive; at 25° migration fails in unc-84 mutants, but at 15° the migration occurs normally. We hypothesized that an additional pathway functions in parallel to the unc-84 pathway to move P-cell nuclei at 15°. In support of our hypothesis, forward genetic screens isolated eight emu (enhancer of the nuclear migration defect of unc-84) mutations that disrupt nuclear migration only in a null unc-84 background. The yc20 mutant was determined to carry a mutation in the toca-1 gene. TOCA-1 functions to move P-cell nuclei in a cell-autonomous manner. TOCA-1 is conserved in humans, where it functions to nucleate and organize actin during endocytosis. Therefore, we have uncovered a player in a previously unknown, likely actin-dependent, pathway that functions to move nuclei in parallel to SUN-KASH bridges. The other emu mutations potentially represent other components of this novel pathway.  相似文献   

18.
19.

Motivation

Biomedical entities, their identifiers and names, are essential in the representation of biomedical facts and knowledge. In the same way, the complete set of biomedical and chemical terms, i.e. the biomedical “term space” (the “Lexeome”), forms a key resource to achieve the full integration of the scientific literature with biomedical data resources: any identified named entity can immediately be normalized to the correct database entry. This goal does not only require that we are aware of all existing terms, but would also profit from knowing all their senses and their semantic interpretation (ambiguities, nestedness).

Result

This study compiles a resource for lexical terms of biomedical interest in a standard format (called “LexEBI”), determines the overall number of terms, their reuse in different resources and the nestedness of terms. LexEBI comprises references for protein and gene entries and their term variants and chemical entities amongst other terms. In addition, disease terms have been identified from Medline and PubmedCentral and added to LexEBI. Our analysis demonstrates that the baseforms of terms from the different semantic types show only little polysemous use. Nonetheless, the term variants of protein and gene names (PGNs) frequently contain species mentions, which should have been avoided according to protein annotation guidelines. Furthermore, the protein and gene entities as well as the chemical entities, both do comprise enzymes leading to hierarchical polysemy, and a large portion of PGNs make reference to a chemical entity. Altogether, according to our analysis based on the Medline distribution, 401,869 unique PGNs in the documents contain a reference to 25,022 chemical entities, 3,125 disease terms or 1,576 species mentions.

Conclusion

LexEBI delivers the complete biomedical and chemical Lexeome in a standardized representation (http://www.ebi.ac.uk/Rebholz-srv/LexEBI/). The resource provides the disease terms as open source content, and fully interlinks terms across resources.  相似文献   

20.
Methods to reliably assess the accuracy of genome sequence data are lacking. Currently completeness is only described qualitatively and mis-assemblies are overlooked. Here we present REAPR, a tool that precisely identifies errors in genome assemblies without the need for a reference sequence. We have validated REAPR on complete genomes or de novo assemblies from bacteria, malaria and Caenorhabditis elegans, and demonstrate that 86% and 82% of the human and mouse reference genomes are error-free, respectively. When applied to an ongoing genome project, REAPR provides corrected assembly statistics allowing the quantitative comparison of multiple assemblies. REAPR is available at http://www.sanger.ac.uk/resources/software/reapr/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号