首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium has important structural, catalytic and signaling roles in cells, yet few tools exist to image this metal ion in real time and at subcellular resolution. Here we report the first genetically encoded sensor for Mg2+, MagFRET-1. This sensor is based on the high-affinity Mg2+ binding domain of human centrin 3 (HsCen3), which undergoes a transition from a molten-globular apo form to a compactly-folded Mg2+-bound state. Fusion of Cerulean and Citrine fluorescent domains to the ends of HsCen3, yielded MagFRET-1, which combines a physiologically relevant Mg2+ affinity (K d = 148 µM) with a 50% increase in emission ratio upon Mg2+ binding due to a change in FRET efficiency between Cerulean and Citrine. Mutations in the metal binding sites yielded MagFRET variants whose Mg2+ affinities were attenuated 2- to 100-fold relative to MagFRET-1, thus covering a broad range of Mg2+ concentrations. In situ experiments in HEK293 cells showed that MagFRET-1 can be targeted to the cytosol and the nucleus. Clear responses to changes in extracellular Mg2+ concentration were observed for MagFRET-1-expressing HEK293 cells when they were permeabilized with digitonin, whereas similar changes were not observed for intact cells. Although MagFRET-1 is also sensitive to Ca2+, this affinity is sufficiently attenuated (K d of 10 µM) to make the sensor insensitive to known Ca2+ stimuli in HEK293 cells. While the potential and limitations of the MagFRET sensors for intracellular Mg2+ imaging need to be further established, we expect that these genetically encoded and ratiometric fluorescent Mg2+ sensors could prove very useful in understanding intracellular Mg2+ homeostasis and signaling.  相似文献   

2.
Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring protein dynamics in live cells that has provided many important biological insights. Although FRAP presumes that the conversion of a fluorophore from a bright to a dark state is irreversible, GFP as well as other genetically encoded fluorescent proteins now in common use can also exhibit a reversible conversion known as photoswitching. Various studies have shown how photoswitching can cause at least four different artifacts in FRAP, leading to false conclusions about various biological phenomena, including the erroneous identification of anomalous diffusion or the overestimation of the freely diffusible fraction of a cellular protein. Unfortunately, identifying and then correcting these artifacts is difficult. Here we report a new characteristic of an organic fluorophore tetramethylrhodamine bound to the HaloTag protein (TMR-HaloTag), which like GFP can be genetically encoded, but which directly and simply overcomes the artifacts caused by photoswitching in FRAP. We show that TMR exhibits virtually no photoswitching in live cells under typical imaging conditions for FRAP. We also demonstrate that TMR eliminates all of the four reported photoswitching artifacts in FRAP. Finally, we apply this photoswitching-free FRAP with TMR to show that the chromatin decondensation following UV irradiation does not involve loss of nucleosomes from the damaged DNA. In sum, we demonstrate that the TMR Halo label provides a genetically encoded fluorescent tag very well suited for accurate FRAP experiments.  相似文献   

3.
The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca2+. Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca2+ indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca2+ signaling in the model apicomplexan Toxoplasma gondii. In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca2+. We define the pool of Ca2+ regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca2+ signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca2+. The enhancers identified are capable of releasing intracellular Ca2+ stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii. The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum. Inhibition of Ca2+-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca2+ stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca2+, underscoring the importance of these pathways and the therapeutic potential of their inhibition.  相似文献   

4.
Ca2+作为第二信使参与了植物生长和发育过程的调控,不同生物和非生物胁迫信号均可诱导胞内Ca2+变化.对Ca2+在信号转导作用中的认识主要来自于细胞内Ca2+浓度测定.水母发光蛋白和基于荧光蛋白的Ca2+荧光指示剂作为检测细胞Ca2+信号的手段是近年发展起来的新方法.本文综述了水母发光蛋白和基于荧光蛋白的Ca2+荧光指示剂的发展、测量原理、优点与不足及其在细胞Ca2+信号转导中的应用研究进展.  相似文献   

5.
6.
Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.  相似文献   

7.
We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.  相似文献   

8.
Maximyuk  O.  Khmyz  V.  Lozovaya  N.  Dascal  N.  Krishtal  O. 《Neurophysiology》2002,34(2-3):182-183
Experiments on isolated rat brain neurons with an elevated intracellular sodium concentration (due to tetanic stimulation) demonstrated the existence of earlier unknown negative modulation of calcium channels by intracellular sodium.  相似文献   

9.
Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry.  相似文献   

10.
《Cell reports》2020,30(10):3466-3477.e4
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
目的:构建表达基因编辑钙探针(GECIs)的细胞系HeLa-GECIs,探究细胞应答外界ATP刺激中钙离子在细胞内的响应和变化。方法:分别用能够直接通过荧光强度反映细胞胞浆内和线粒体内钙离子相对浓度的2种钙探针cyto-GCaMP6和4mt-GCaMP6感染HeLa细胞,获得2种表达钙离子探针的HeLa细胞系;在感染了2种腺病毒探针24 h后,用共聚焦荧光显微镜检测荧光探针在HeLa细胞内的表达情况;在表达2种钙探针的细胞的培养基中加入外源ATP,用Time-lapse成像动态观测技术观察HeLa细胞内钙离子对外环境中ATP的响应。结果:共聚焦荧光显微镜观察,确定95%以上的细胞表达了对应的钙离子指示荧光探针;Time-lapse成像动态观测技术观察发现,在细胞培养基中加入ATP后,细胞胞浆钙探针荧光强度瞬时(3~6 s)升至10倍,200 s后逐渐降低到基础水平;线粒体钙到达峰值(4倍)的时间稍滞后(5~8 s),并且回落更慢,300 s时至1.5倍。在ATP受体P2X7抑制剂A438079预处理的实验组,上述胞浆钙和线粒体钙浓度上升不明显。结论:构建了能在活体细胞内通过荧光探针实时监测钙离子响应胞外ATP刺激的细胞实验体系,为进一步深入探究ATP等危险信号导致细胞的炎性损伤机制奠定了基础。  相似文献   

14.
The mechanism by which growing neurites sense and respond to small applied electrical fields is not known, but there is some evidence that the entry of Ca2+ from the external medium, with the subsequent formation of intracellular Ca2+ gradients, is important in this process. We have employed two approaches to test this idea. Xenopus spinal neurites were exposed to electrical fields in a culture medium in which Ca2+ was chelated to very low levels compared to the normal extracellular concentration of 2 mM. In other experiments, loading the neurites with the calcium buffer, 1,2‐bis(o‐aminophenoxy)ethane‐N,N,N′,N′‐tetraacetic acid (BAPTA), disrupted the putative internal Ca2+ gradients, and the effects on the electrical response were determined. Fields of 100 mV/mm were applied for 12 h, and no difference was detected in the cathodal turning response between the treated neurites and the untreated controls. Using the Differential Growth Index (DGI), an asymmetry index, to quantitate the turning response, we recorded DGIs of −0.64, −0.65, and −0.62 for control cells, cells in Ca2+‐free medium, and cells preloaded with BAPTA, respectively. Furthermore, we detected an increase in neurite length for those neurons cultured in Ca2+‐free medium; they were 1.5–1.7 times as long as neurites from neurons cultured in normal Ca2+ medium. Likewise, we found that BAPTA‐loaded neurites were longer than control neurites. Our data indicate that neuronal galvanotropism is independent of the entry of external Ca2+ or of internal Ca2+ gradients. Both cell‐permeant agonistic and antagonistic analogs of cyclic 3′,5′‐adenosine monophosphate (cAMP) increased the response to applied electrical fields. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 30–38, 2000  相似文献   

15.
In the developing thymus, strong T cell receptor (TCR) activation by self-antigensinduces negative selection and weak TCR activation induces positive selection. Bothprocesses are mediated by Ca2+ signals, raising the question of how a single secondmessenger like Ca2+ can mediate such diverse cell fates. Recent findings indicate thatgraded TCR activation signals are encoded in distinct patterns of Ca2+ elevation. Theanti-apoptotic protein Bcl-2 discriminates between these Ca2+ signaling patterns,selectively inhibiting pro-apoptotic Ca2+ signals induced by strong TCR activationwithout suppressing pro-survival Ca2+ signals induced by weak TCR activation.  相似文献   

16.
The calcium sensor protein caldendrin is abundantly expressed in neurons and is thought to play an important role in different aspects of synapto-dendritic Ca2+ signaling. Caldendrin is highly abundant in the postsynaptic density of a subset of excitatory synapses in brain and its distinct localization raises several decisive questions about its function. Previous work suggests that caldendrin is tightly associated with Ca2+ - and Ca2+ release channels and might be involved in different aspects of the organization of the postsynaptic scaffold as well as with synapse-to-nucleus communication. In this report we introduce two new EF-hand calcium sensor proteins termed calneurons that apart from calmodulin represent the closest homologues of caldendrin in brain. Calneurons have a different EF-hand organization than other calcium sensor proteins, are prominently expressed in neurons and will presumably bind Ca2+ with higher affinity than caldendrin. Despite some significant structural differences it is conceivable that they are involved in similar Ca2+ regulated processes like caldendrin and neuronal calcium sensor proteins.  相似文献   

17.
18.
The past year has seen several sets of experimental results demonstrate that fast, large and highly localized rises in intracellular Ca2+ concentration can occur in neurons. These results confirm previous theoretical predictions of acute spatial compartmentalization of Ca2+ signalling, and document a form of signalling that may occur whenever rapid and local signal processing is the goal. The dimensions involved present severe challenges for attempts to directly measure these signalling events.  相似文献   

19.
《Biophysical journal》2020,118(5):1196-1204
Intercellular bridges are plasma continuities formed at the end of the cytokinesis process that facilitate intercellular mass transport between the two daughter cells. However, it remains largely unknown how the intercellular bridge mediates Ca2+ communication between postmitotic cells. In this work, we utilize BV-2 microglial cells planted on dumbbell-shaped micropatterned assemblies to resolve spatiotemporal characteristics of Ca2+ signal transfer over the intercellular bridges. With the use of such micropatterns, considerably longer and more regular intercellular bridges can be obtained than in conventional cell cultures. The initial Ca2+ signal is evoked by mechanical stimulation of one of the daughter cells. A considerable time delay is observed between the arrivals of passive Ca2+ diffusion and endogenous Ca2+ response in the intercellular-bridge-connected cell, indicating two different pathways of the Ca2+ communication. Extracellular Ca2+ and the paracrine pathway have practically no effect on the endogenous Ca2+ response, demonstrated by application of Ca2+-free medium, exogenous ATP, and P2Y13 receptor antagonist. In contrast, the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin and inositol trisphosphate (IP3) receptor blocker 2-aminoethyl diphenylborate significantly inhibit the endogenous Ca2+ increase, which signifies involvement of IP3-sensitive calcium store release. Notably, passive Ca2+ diffusion into the connected cell can clearly be detected when IP3-sensitive calcium store release is abolished by 2-aminoethyl diphenylborate. Those observations prove that both passive Ca2+ diffusion and IP3-mediated endogenous Ca2+ response contribute to the Ca2+ increase in intercellular-bridge-connected cells. Moreover, a simulation model agreed well with the experimental observations.  相似文献   

20.
[Ca2+]i signaling regulates sperm motility, enabling switching between functionally different behaviors that the sperm must employ as it ascends the female tract and fertilizes the oocyte. We report that different behaviors in human sperm are recruited according to the Ca2+ signaling pathway used. Activation of CatSper (by raising pHi or stimulating with progesterone) caused sustained [Ca2+]i elevation but did not induce hyperactivation, the whiplash-like behavior required for progression along the oviduct and penetration of the zona pellucida. In contrast, penetration into methylcellulose (mimicking penetration into cervical mucus or cumulus matrix) was enhanced by activation of CatSper. NNC55-0396, which abolishes CatSper currents in human sperm, inhibited this effect. Treatment with 5 μm thimerosal to mobilize stored Ca2+ caused sustained [Ca2+]i elevation and induced strong, sustained hyperactivation that was completely insensitive to NNC55-0396. Thimerosal had no effect on penetration into methylcellulose. 4-Aminopyridine, a powerful modulator of sperm motility, both raised pHi and mobilized Ca2+ stored in sperm (and from microsomal membrane preparations). 4-Aminopyridine-induced hyperactivation even in cells suspended in Ca2+-depleted medium and also potentiated penetration into methylcellulose. The latter effect was sensitive to NNC55-039, but induction of hyperactivation was not. We conclude that these two components of the [Ca2+]i signaling apparatus have strikingly different effects on sperm motility. Furthermore, since stored Ca2+ at the sperm neck can be mobilized by Ca2+-induced Ca2+ release, we propose that CatSper activation can elicit functionally different behaviors according to the sensitivity of the Ca2+ store, which may be regulated by capacitation and NO from the cumulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号