首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The repeated presentation of stimuli typically attenuates neural responses (repetition suppression) or, less commonly, increases them (repetition enhancement) when stimuli are highly complex, degraded or presented under noisy conditions. In adult functional neuroimaging research, these repetition effects are considered as neural correlates of habituation. The development and respective functional significance of these effects in infancy remain largely unknown.

Objective

This study investigates repetition effects in newborns using functional near-infrared spectroscopy, and specifically the role of stimulus complexity in evoking a repetition enhancement vs. a repetition suppression response, following up on Gervain et al. (2008). In that study, abstract rule-learning was found at birth in cortical areas specific to speech processing, as evidenced by a left-lateralized repetition enhancement of the hemodynamic response to highly variable speech sequences conforming to a repetition-based ABB artificial grammar, but not to a random ABC grammar.

Methods

Here, the same paradigm was used to investigate how simpler stimuli (12 different sequences per condition as opposed to 140), and simpler presentation conditions (blocked rather than interleaved) would influence repetition effects at birth.

Results

Results revealed that the two grammars elicited different dynamics in the two hemispheres. In left fronto-temporal areas, we reproduce the early perceptual discrimination of the two grammars, with ABB giving rise to a greater response at the beginning of the experiment than ABC. In addition, the ABC grammar evoked a repetition enhancement effect over time, whereas a stable response was found for the ABB grammar. Right fronto-temporal areas showed neither initial discrimination, nor change over time to either pattern.

Conclusion

Taken together with Gervain et al. (2008), this is the first evidence that manipulating methodological factors influences the presence or absence of neural repetition enhancement effects in newborns and stimulus variability appears a particularly important factor. Further, this temporal modulation is restricted to the left hemisphere, confirming its specialization for learning linguistic regularities from birth.  相似文献   

2.
Kim RS  Seitz AR  Shams L 《PloS one》2008,3(1):e1532

Background

Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning.

Methodology/Principle Findings

Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli.

Conclusions/Significance

This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level.  相似文献   

3.

Background

Visual perception is usually stable and accurate. However, when the two eyes are simultaneously presented with conflicting stimuli, perception falls into a sequence of spontaneous alternations, switching between one stimulus and the other every few seconds. Known as binocular rivalry, this visual illusion decouples subjective experience from physical stimulation and provides a unique opportunity to study the neural correlates of consciousness. The temporal properties of this alternating perception have been intensively investigated for decades, yet the relationship between two fundamental properties - the sequence of percepts and the duration of each percept - remains largely unexplored.

Methodology/Principal Findings

Here we examine the relationship between the percept sequence and the percept duration by quantifying their sensitivity to the strength imbalance between two monocular stimuli. We found that the percept sequence is far more susceptible to the stimulus imbalance than does the percept duration. The percept sequence always begins with the stronger stimulus, even when the stimulus imbalance is too weak to cause a significant bias in the percept duration. Therefore, introducing a small stimulus imbalance affects the percept sequence, whereas increasing the imbalance affects the percept duration, but not vice versa. To investigate why the percept sequence is so vulnerable to the stimulus imbalance, we further measured the interval between the stimulus onset and the first percept, during which subjects experienced the fusion of two monocular stimuli. We found that this interval is dramatically shortened with increased stimulus imbalance.

Conclusions/Significance

Our study shows that in binocular rivalry, the strength imblanace between monocular stimuli has a much greater impact on the percept sequence than on the percept duration, and increasing this imbalance can accelerate the process responsible for the percept sequence.  相似文献   

4.

Background

Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system.

Methodology/Principal Findings

Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli.

Conclusions/Significance

Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps.  相似文献   

5.
Skoe E  Kraus N 《PloS one》2010,5(10):e13645

Background

Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody) interact with more global statistics (i.e., repetition of the melody).

Methodology/Principal Findings

To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern.

Conclusions/Significance

We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-time transformations, which may subserve humans'' strong disposition for grouping auditory objects, likely reflect a mix of local processes and corticofugal modulation arising from statistical regularities and the influences of expectation. Our results contribute to our understanding of the biological basis of statistical learning and initiate a new investigational approach relating to the time-course of subcortical plasticity. Although the reported time-dependent enhancements are believed to reflect universal neurophysiological processes, future experiments utilizing a larger array of stimuli are needed to establish the generalizability of our findings.  相似文献   

6.
7.

Background

In visual psychophysics, precise display timing, particularly for brief stimulus presentations, is often required. The aim of this study was to systematically review the commonly applied methods for the computation of stimulus durations in psychophysical experiments and to contrast them with the true luminance signals of stimuli on computer displays.

Methodology/Principal Findings

In a first step, we systematically scanned the citation index Web of Science for studies with experiments with stimulus presentations for brief durations. Articles which appeared between 2003 and 2009 in three different journals were taken into account if they contained experiments with stimuli presented for less than 50 milliseconds. The 79 articles that matched these criteria were reviewed for their method of calculating stimulus durations. For those 75 studies where the method was either given or could be inferred, stimulus durations were calculated by the sum of frames (SOF) method. In a second step, we describe the luminance signal properties of the two monitor technologies which were used in the reviewed studies, namely cathode ray tube (CRT) and liquid crystal display (LCD) monitors. We show that SOF is inappropriate for brief stimulus presentations on both of these technologies. In extreme cases, SOF specifications and true stimulus durations are even unrelated. Furthermore, the luminance signals of the two monitor technologies are so fundamentally different that the duration of briefly presented stimuli cannot be calculated by a single method for both technologies. Statistics over stimulus durations given in the reviewed studies are discussed with respect to different duration calculation methods.

Conclusions/Significance

The SOF method for duration specification which was clearly dominating in the reviewed studies leads to serious misspecifications particularly for brief stimulus presentations. We strongly discourage its use for brief stimulus presentations on CRT and LCD monitors.  相似文献   

8.

Background

The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.

Methodology/Findings

We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.

Conclusions/Significance

These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions.  相似文献   

9.

Background

A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood.

Methodology/Principal Findings

Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent.

Conclusions/Significance

We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand.  相似文献   

10.

Objectives

Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern.

Experimental design

Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition.

Principal findings

The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca''s area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects.

Conclusions

Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.  相似文献   

11.
Xue G  Mei L  Chen C  Lu ZL  Poldrack RA  Dong Q 《PloS one》2010,5(10):e13204

Background

The left midfusiform and adjacent regions have been implicated in processing and memorizing familiar words, yet its role in memorizing novel characters has not been well understood.

Methodology/Principal Findings

Using functional MRI, the present study examined the hypothesis that the left midfusiform is also involved in memorizing novel characters and spaced learning could enhance the memory by enhancing the left midfusiform activity during learning. Nineteen native Chinese readers were scanned while memorizing the visual form of 120 Korean characters that were novel to the subjects. Each character was repeated four times during learning. Repetition suppression was manipulated by using two different repetition schedules: massed learning and spaced learning, pseudo-randomly mixed within the same scanning session. Under the massed learning condition, the four repetitions were consecutive (with a jittered inter-repetition interval to improve the design efficiency). Under the spaced learning condition, the four repetitions were interleaved with a minimal inter-repetition lag of 6 stimuli. Spaced learning significantly improved participants'' performance during the recognition memory test administered one hour after the scan. Stronger left midfusiform and inferior temporal gyrus activities during learning (summed across four repetitions) were associated with better memory of the characters, based on both within- and cross-subjects analyses. Compared to massed learning, spaced learning significantly reduced neural repetition suppression and increased the overall activities in these regions, which were associated with better memory for novel characters.

Conclusions/Significance

These results demonstrated a strong link between cortical activity in the left midfusiform and memory for novel characters, and thus challenge the visual word form area (VWFA) hypothesis. Our results also shed light on the neural mechanisms of the spacing effect in memorizing novel characters.  相似文献   

12.

Background

The duration of sounds can affect the perceived duration of co-occurring visual stimuli. However, it is unclear whether this is limited to amodal processes of duration perception or affects other non-temporal qualities of visual perception.

Methodology/Principal Findings

Here, we tested the hypothesis that visual sensitivity - rather than only the perceived duration of visual stimuli - can be affected by the duration of co-occurring sounds. We found that visual detection sensitivity (d’) for unimodal stimuli was higher for stimuli of longer duration. Crucially, in a cross-modal condition, we replicated previous unimodal findings, observing that visual sensitivity was shaped by the duration of co-occurring sounds. When short visual stimuli (∼24 ms) were accompanied by sounds of matching duration, visual sensitivity was decreased relative to the unimodal visual condition. However, when the same visual stimuli were accompanied by longer auditory stimuli (∼60–96 ms), visual sensitivity was increased relative to the performance for ∼24 ms auditory stimuli. Across participants, this sensitivity enhancement was observed within a critical time window of ∼60–96 ms. Moreover, the amplitude of this effect correlated with visual sensitivity enhancement found for longer lasting visual stimuli across participants.

Conclusions/Significance

Our findings show that the duration of co-occurring sounds affects visual perception; it changes visual sensitivity in a similar way as altering the (actual) duration of the visual stimuli does.  相似文献   

13.

Background

Subjects with Attention-Deficit Hyperactivity Disorder (ADHD) are overdistractible by stimuli out of the intended focus of attention. This control deficit could be due to primarily reduced attentional capacities or, e. g., to overshooting orienting to unexpected events. Here, we aimed at identifying disease-related abnormalities of novelty processing and, therefore, studied event-related potentials (ERP) to respective stimuli in adult ADHD patients compared to healthy subjects.

Methods

Fifteen unmedicated subjects with ADHD and fifteen matched controls engaged in a visual oddball task (OT) under simultaneous EEG recordings. A target stimulus, upon which a motor response was required, and non-target stimuli, which did not demand a specific reaction, were presented in random order. Target and most non-target stimuli were presented repeatedly, but some non-target stimuli occurred only once (‘novels’). These unique stimuli were either ‘relative novels’ with which a meaning could be associated, or ‘complete novels’, if no association was available.

Results

In frontal recordings, a positive component with a peak latency of some 400 ms became maximal after novels. In healthy subjects, this novelty-P3 (or ‘orienting response’) was of higher magnitude after complete than after relative novels, in contrast to the patients with an undifferentially high frontal responsivity. Instead, ADHD patients tended to smaller centro-parietal P3 responses after target signals and, on a behavioural level, responded slower than controls.

Conclusion

The results demonstrate abnormal novelty processing in adult subjects with ADHD. In controls, the ERP pattern indicates that allocation of meaning modulates the processing of new stimuli. However, in ADHD such a modulation was not prevalent. Instead, also familiar, only context-wise new stimuli were treated as complete novels. We propose that disturbed semantic processing of new stimuli resembles a mechanism for excessive orienting to commonly negligible stimuli in ADHD.  相似文献   

14.

Background

Some studies have reported gender differences in N170, a face-selective event-related potential (ERP) component. This study investigated gender differences in N170 elicited under oddball paradigm in order to clarify the effect of task demand on gender differences in early facial processing.

Findings

Twelve males and 10 females discriminated targets (emotional faces) from non-targets (emotionally neutral faces) under an oddball paradigm, pressing a button as quickly as possible in response to the target. Clear N170 was elicited in response to target and non-target stimuli in both males and females. However, females showed more negative amplitude of N170 in response to target compared with non-target, while males did not show different N170 responses between target and non-target.

Conclusions

The present results suggest that females have a characteristic of allocating attention at an early stage when responding to faces actively (target) compared to viewing faces passively (non-target). This supports previous findings suggesting that task demand is an important factor in gender differences in N170.  相似文献   

15.

Background

A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli.

Methodology/Principal Findings

In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1) more frequent attractive shifts, (2) an increase of their magnitude, and (3) an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation.

Conclusion/Significance

The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These enhanced neuronal responses suggest that the range of neuronal plasticity available to the visual system is broader than anticipated.  相似文献   

16.
Balkenius A  Hansson B 《PloS one》2012,7(4):e32133

Background

The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings

Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.

Conclusions

Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth.  相似文献   

17.

Objective

Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball.

Methods

Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude.

Results

Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy.

Conclusions

Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection.

Significance

Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.  相似文献   

18.

Background

Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.

Methodology

Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.

Principal Findings

We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.

Conclusions

Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex.  相似文献   

19.
Li YC  Chen CC  Chen JH 《PloS one》2011,6(5):e18954

Background

Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01–0.08 Hz) fluctuations (LFFs) during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1) interactions between visual stimuli and resting-state; (2) impact of repetition rate of visual stimuli.

Methodology/Principal Findings

We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses), fALFF (fractional Amplitude of Low Frequency Fluctuation), and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated.

Conclusions/Significance

To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration) and disordered behaviors (early blind), but also exogenous sensory stimuli (visual stimuli with various repetition rates). It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.  相似文献   

20.

Background

In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared.

Methodology/Principal Findings

First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas.

Conclusions/Significance

Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号