共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie. 相似文献
2.
Benjamin Lacar Stephanie Z. Young Jean-Claude Platel Angélique Bordey 《Journal of visualized experiments : JoVE》2012,(67)
The subventricular zone (SVZ) is one of the two neurogenic zones in the postnatal brain. The SVZ contains densely packed cells, including neural progenitor cells with astrocytic features (called SVZ astrocytes), neuroblasts, and intermediate progenitor cells. Neuroblasts born in the SVZ tangentially migrate a great distance to the olfactory bulb, where they differentiate into interneurons. Intercellular signaling through adhesion molecules and diffusible signals play important roles in controlling neurogenesis. Many of these signals trigger intercellular calcium activity that transmits information inside and between cells. Calcium activity is thus reflective of the activity of extracellular signals and is an optimal way to understand functional intercellular signaling among SVZ cells.Calcium activity has been studied in many other regions and cell types, including mature astrocytes and neurons. However, the traditional method to load cells with calcium indicator dye (i.e. bath loading) was not efficient at loading all SVZ cell types. Indeed, the cellular density in the SVZ precludes dye diffusion inside the tissue. In addition, preparing sagittal slices will better preserve the three-dimensional arrangement of SVZ cells, particularly the stream of neuroblast migration on the rostral-caudal axis.Here, we describe methods to prepare sagittal sections containing the SVZ, the loading of SVZ cells with calcium indicator dye, and the acquisition of calcium activity with time-lapse movies. We used Fluo-4 AM dye for loading SVZ astrocytes using pressure application inside the tissue. Calcium activity was recorded using a scanning confocal microscope allowing a precise resolution for distinguishing individual cells. Our approach is applicable to other neurogenic zones including the adult hippocampal subgranular zone and embryonic neurogenic zones. In addition, other types of dyes can be applied using the described method. 相似文献
3.
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults 1. BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor 2, 3. Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters 4-6. BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance 6-8. While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT 9-13, there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of 18F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol 14, 15, or the enhanced BAT activation by β3 agonist BRL37344 16. The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies. 相似文献
4.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels.In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis. 相似文献
5.
Ifat Levy Lior Rosenberg Belmaker Kirk Manson Agnieszka Tymula Paul W. Glimcher 《Journal of visualized experiments : JoVE》2012,(67)
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity1,2, the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method3 to assess the neural representation of the subjective values of risky and ambiguous options4. This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations.In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual''s choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options. 相似文献
6.
Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing1. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function 2. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions 3. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated 4. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity.Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS 5-7. However, this online combination has many technical problems, including the static artifacts resulting from the presence of the TMS coil in the scanner room, or the effects of TMS pulses on the process of MR image formation. But more importantly, the loud acoustic noise induced by TMS (increased compared with standard use because of the resonance of the scanner bore) and the increased TMS coil vibrations (caused by the strong mechanical forces due to the static magnetic field of the MR scanner) constitute a crucial problem when studying auditory processing. This is one reason why fMRI was carried out before and after TMS in the present study. Similar approaches have been used to target the motor cortex 8,9, premotor cortex 10, primary somatosensory cortex 11,12 and language-related areas 13, but so far no combined TMS-fMRI study has investigated the auditory cortex. The purpose of this article is to provide details concerning the protocol and considerations necessary to successfully combine these two neuroscientific tools to investigate auditory processing. Previously we showed that repetitive TMS (rTMS) at high and low frequencies (resp. 10 Hz and 1 Hz) applied over the auditory cortex modulated response time (RT) in a melody discrimination task 2. We also showed that RT modulation was correlated with functional connectivity in the auditory network assessed using fMRI: the higher the functional connectivity between left and right auditory cortices during task performance, the higher the facilitatory effect (i.e. decreased RT) observed with rTMS. However those findings were mainly correlational, as fMRI was performed before rTMS. Here, fMRI was carried out before and immediately after TMS to provide direct measures of the functional organization of the auditory cortex, and more specifically of the plastic reorganization of the auditory neural network occurring after the neural intervention provided by TMS. Combined fMRI and TMS applied over the auditory cortex should enable a better understanding of brain mechanisms of auditory processing, providing physiological information about functional effects of TMS. This knowledge could be useful for many cognitive neuroscience applications, as well as for optimizing therapeutic applications of TMS, particularly in auditory-related disorders. 相似文献
7.
Despite an enormous increase in our knowledge about the mechanisms underlying the encoding of information in the brain, a central question concerning the precise molecular steps as well as the activity of specific neurons in multi-functional nuclei of brain areas such as the hypothalamus remain. This problem includes identification of the molecular components involved in the regulation of various neurohormone signal transduction cascades. Elevations of intracellular Ca2+ play an important role in regulating the sensitivity of neurons, both at the level of signal transduction and at synaptic sites.New tools have emerged to help identify neurons in the myriad of brain neurons by expressing green fluorescent protein (GFP) under the control of a particular promoter. To monitor both spatially and temporally stimulus-induced Ca2+ responses in GFP-tagged neurons, a non-green fluorescent Ca2+ indicator dye needs to be used. In addition, confocal microscopy is a favorite method of imaging individual neurons in tissue slices due to its ability to visualize neurons in distinct planes of depth within the tissue and to limit out-of-focus fluorescence. The ratiometric Ca2+ indicator fura-2 has been used in combination with GFP-tagged neurons1. However, the dye is excited by ultraviolet (UV) light. The cost of the laser and the limited optical penetration depth of UV light hindered its use in many laboratories. Moreover, GFP fluorescence may interfere with the fura-2 signals2. Therefore, we decided to use a red fluorescent Ca2+ indicator dye. The huge Stokes shift of fura-red permits multicolor analysis of the red fluorescence in combination with GFP using a single excitation wavelength. We had previously good results using fura-red in combination with GFP-tagged olfactory neurons3. The protocols for olfactory tissue slices seemed to work equally well in hypothalamic neurons4. Fura-red based Ca2+ imaging was also successfully combined with GFP-tagged pancreatic β-cells and GFP-tagged receptors expressed in HEK cells5,6. A little quirk of fura-red is that its fluorescence intensity at 650 nm decreases once the indicator binds calcium7. Therefore, the fluorescence of resting neurons with low Ca2+ concentration has relatively high intensity. It should be noted, that other red Ca2+-indicator dyes exist or are currently being developed, that might give better or improved results in different neurons and brain areas. 相似文献
8.
Tobias B?uerle Dorde Komljenovic Martin R. Berger Wolfhard Semmler 《Journal of visualized experiments : JoVE》2012,(66)
Angiogenesis is an essential feature of cancer growth and metastasis formation. In bone
metastasis, angiogenic factors are pivotal for tumor cell proliferation in the bone marrow
cavity as well as for interaction of tumor and bone cells resulting in local bone
destruction. Our aim was to develop a model of experimental bone metastasis that allows
in vivo assessment of angiogenesis in skeletal lesions using
non-invasive imaging techniques.For this purpose, we injected 105 MDA-MB-231 human breast cancer cells into
the superficial epigastric artery, which precludes the growth of metastases in body areas
other than the respective hind leg1. Following 25-30 days after tumor cell
inoculation, site-specific bone metastases develop, restricted to the distal femur,
proximal tibia and proximal fibula1. Morphological and functional aspects of
angiogenesis can be investigated longitudinally in bone metastases using magnetic
resonance imaging (MRI), volumetric computed tomography (VCT) and ultrasound (US).MRI displays morphologic information on the soft tissue part of bone metastases that is
initially confined to the bone marrow cavity and subsequently exceeds cortical bone while
progressing. Using dynamic contrast-enhanced MRI (DCE-MRI) functional data including
regional blood volume, perfusion and vessel permeability can be obtained and
quantified2-4. Bone destruction is captured in high resolution using
morphological VCT imaging. Complementary to MRI findings, osteolytic lesions can be
located adjacent to sites of intramedullary tumor growth. After contrast agent
application, VCT angiography reveals the macrovessel architecture in bone metastases in
high resolution, and DCE-VCT enables insight in the microcirculation of these
lesions5,6. US is applicable to assess morphological and functional features
from skeletal lesions due to local osteolysis of cortical bone. Using B-mode and Doppler
techniques, structure and perfusion of the soft tissue metastases can be evaluated,
respectively. DCE-US allows for real-time imaging of vascularization in bone metastases
after injection of microbubbles7.In conclusion, in a model of site-specific breast cancer bone metastases multi-modal
imaging techniques including MRI, VCT and US offer complementary information on morphology
and functional parameters of angiogenesis in these skeletal lesions. 相似文献
9.
Xueming Wu Daniel Lindner Guan-Ping Yu Susann Brady-Kalnay Zheng-Rong Lu 《Journal of visualized experiments : JoVE》2013,(79)
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor. 相似文献
10.
Lioubov I. Brueggemann Bharath K. Mani Jennifer Haick Kenneth L. Byron 《Journal of visualized experiments : JoVE》2012,(67)
Contraction or relaxation of smooth muscle cells within the walls of resistance arteries determines the artery diameter and thereby controls flow of blood through the vessel and contributes to systemic blood pressure. The contraction process is regulated primarily by cytosolic calcium concentration ([Ca2+]cyt), which is in turn controlled by a variety of ion transporters and channels. Ion channels are common intermediates in signal transduction pathways activated by vasoactive hormones to effect vasoconstriction or vasodilation. And ion channels are often targeted by therapeutic agents either intentionally (e.g. calcium channel blockers used to induce vasodilation and lower blood pressure) or unintentionally (e.g. to induce unwanted cardiovascular side effects).Kv7 (KCNQ) voltage-activated potassium channels have recently been implicated as important physiological and therapeutic targets for regulation of smooth muscle contraction. To elucidate the specific roles of Kv7 channels in both physiological signal transduction and in the actions of therapeutic agents, we need to study how their activity is modulated at the cellular level as well as evaluate their contribution in the context of the intact artery.The rat mesenteric arteries provide a useful model system. The arteries can be easily dissected, cleaned of connective tissue, and used to prepare isolated arterial myocytes for patch clamp electrophysiology, or cannulated and pressurized for measurements of vasoconstrictor/vasodilator responses under relatively physiological conditions. Here we describe the methods used for both types of measurements and provide some examples of how the experimental design can be integrated to provide a clearer understanding of the roles of these ion channels in the regulation of vascular tone. 相似文献
11.
Hui-Yi Hsiao Robert J. Johnston Jr. David Jukam Daniel Vasiliauskas Claude Desplan Jens Rister 《Journal of visualized experiments : JoVE》2012,(69)
The compound eye of Drosophila melanogaster consists of about 750 ommatidia (unit eyes). Each ommatidium is composed of about 20 cells, including lens-secreting cone cells, pigment cells, a bristle cell and eight photoreceptors (PRs) R1-R8 2. The PRs have specialized microvillar structures, the rhabdomeres, which contain light-sensitive pigments, the Rhodopsins (Rhs). The rhabdomeres of six PRs (R1-R6) form a trapezoid and contain Rh1 3 4. The rhabdomeres of R7 and R8 are positioned in tandem in the center of the trapezoid and share the same path of light. R7 and R8 PRs stochastically express different combinations of Rhs in two main subtypes5: In the ''p'' subtype, Rh3 in pR7s is coupled with Rh5 in pR8s, whereas in the ''y'' subtype, Rh4 in yR7s is associated with Rh6 in yR8s 6 7 8.Early specification of PRs and development of ommatidia begins in the larval eye-antennal imaginal disc, a monolayer of epithelial cells. A wave of differentiation sweeps across the disc9 and initiates the assembly of undifferentiated cells into ommatidia10-11. The ''founder cell'' R8 is specified first and recruits R1-6 and then R7 12-14. Subsequently, during pupal development, PR differentiation leads to extensive morphological changes 15, including rhabdomere formation, synaptogenesis and eventually rh expression.In this protocol, we describe methods for retinal dissections and immunohistochemistry at three defined periods of retina development, which can be applied to address a variety of questions concerning retinal formation and developmental pathways. Here, we use these methods to visualize the stepwise PR differentiation at the single-cell level in whole mount larval, midpupal and adult retinas (Figure 1). 相似文献
12.
GP Howles Y Qi SJ Rosenzweig KR Nightingale GA Johnson 《Journal of visualized experiments : JoVE》2012,(65):e4055
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents. In AIM MRI, Mn(2+) acts a calcium analog and accumulates in depolarized neurons. Because Mn(2+) shortens the T1 tissue property, regions of elevated neuronal activity will enhance in MRI. Furthermore, Mn(2+) clears slowly from the activated regions; therefore, stimulation can be performed outside the magnet prior to imaging, enabling greater experimental flexibility. However, because Mn(2+) does not readily cross the blood-brain barrier (BBB), the need to open the BBB has limited the use of AIM MRI, especially in mice. One tool for opening the BBB is ultrasound. Though potentially damaging, if ultrasound is administered in combination with gas-filled microbubbles (i.e., ultrasound contrast agents), the acoustic pressure required for BBB opening is considerably lower. This combination of ultrasound and microbubbles can be used to reliably open the BBB without causing tissue damage. Here, a method is presented for performing AIM MRI by using microbubbles and ultrasound to open the BBB. After an intravenous injection of perflutren microbubbles, an unfocused pulsed ultrasound beam is applied to the shaved mouse head for 3 minutes. For simplicity, we refer to this technique of BBB Opening with Microbubbles and UltraSound as BOMUS. Using BOMUS to open the BBB throughout both cerebral hemispheres, manganese is administered to the whole mouse brain. After experimental stimulation of the lightly sedated mice, AIM MRI is used to map the neuronal response. To demonstrate this approach, herein BOMUS and AIM MRI are used to map unilateral mechanical stimulation of the vibrissae in lightly sedated mice. Because BOMUS can open the BBB throughout both hemispheres, the unstimulated side of the brain is used to control for nonspecific background stimulation. The resultant 3D activation map agrees well with published representations of the vibrissae regions of the barrel field cortex. The ultrasonic opening of the BBB is fast, noninvasive, and reversible; and thus this approach is suitable for high-throughput and/or longitudinal studies in awake mice. 相似文献
13.
Jihye Bae Abhay Deshmukh Yinchen Song Jorge Riera 《Journal of visualized experiments : JoVE》2015,(100)
Electroencephalogram (EEG) has been traditionally used to determine which brain regions are the most likely candidates for resection in patients with focal epilepsy. This methodology relies on the assumption that seizures originate from the same regions of the brain from which interictal epileptiform discharges (IEDs) emerge. Preclinical models are very useful to find correlates between IED locations and the actual regions underlying seizure initiation in focal epilepsy. Rats have been commonly used in preclinical studies of epilepsy1; hence, there exist a large variety of models for focal epilepsy in this particular species. However, it is challenging to record multichannel EEG and to perform brain source imaging in such a small animal. To overcome this issue, we combine a patented-technology to obtain 32-channel EEG recordings from rodents2 and an MRI probabilistic atlas for brain anatomical structures in Wistar rats to perform brain source imaging. In this video, we introduce the procedures to acquire multichannel EEG from Wistar rats with focal cortical dysplasia, and describe the steps both to define the volume conductor model from the MRI atlas and to uniquely determine the IEDs. Finally, we validate the whole methodology by obtaining brain source images of IEDs and compare them with those obtained at different time frames during the seizure onset. 相似文献
14.
Transplantation models using human brain tumor cells have served an essential function in neuro-oncology research for many years. In the past, the most commonly used procedure for human tumor xenograft establishment consisted of the collection of cells from culture flasks, followed by the subcutaneous injection of the collected cells in immunocompromised mice. Whereas this approach still sees frequent use in many laboratories, there has been a significant shift in emphasis over the past decade towards orthotopic xenograft establishment, which, in the instance of brain tumors, requires tumor cell injection into appropriate neuroanatomical structures. Because intracranial xenograft establishment eliminates the ability to monitor tumor growth through direct measurement, such as by use of calipers, the shift in emphasis towards orthotopic brain tumor xenograft models has necessitated the utilization of non-invasive imaging for assessing tumor burden in host animals. Of the currently available imaging methods, bioluminescence monitoring is generally considered to offer the best combination of sensitivity, expediency, and cost. Here, we will demonstrate procedures for orthotopic brain tumor establishment, and for monitoring tumor growth and response to treatment when testing experimental therapies. 相似文献
15.
Gabriella Garcia Catherine Norise Olufunsho Faseyitan Margaret A. Naeser Roy H. Hamilton 《Journal of visualized experiments : JoVE》2013,(77)
Transcranial magnetic stimulation (TMS) has been shown to significantly improve language function in patients with non-fluent aphasia1. In this experiment, we demonstrate the administration of low-frequency repetitive TMS (rTMS) to an optimal stimulation site in the right hemisphere in patients with chronic non-fluent aphasia. A battery of standardized language measures is administered in order to assess baseline performance. Patients are subsequently randomized to either receive real rTMS or initial sham stimulation. Patients in the real stimulation undergo a site-finding phase, comprised of a series of six rTMS sessions administered over five days; stimulation is delivered to a different site in the right frontal lobe during each of these sessions. Each site-finding session consists of 600 pulses of 1 Hz rTMS, preceded and followed by a picture-naming task. By comparing the degree of transient change in naming ability elicited by stimulation of candidate sites, we are able to locate the area of optimal response for each individual patient. We then administer rTMS to this site during the treatment phase. During treatment, patients undergo a total of ten days of stimulation over the span of two weeks; each session is comprised of 20 min of 1 Hz rTMS delivered at 90% resting motor threshold. Stimulation is paired with an fMRI-naming task on the first and last days of treatment. After the treatment phase is complete, the language battery obtained at baseline is repeated two and six months following stimulation in order to identify rTMS-induced changes in performance. The fMRI-naming task is also repeated two and six months following treatment. Patients who are randomized to the sham arm of the study undergo sham site-finding, sham treatment, fMRI-naming studies, and repeat language testing two months after completing sham treatment. Sham patients then cross over into the real stimulation arm, completing real site-finding, real treatment, fMRI, and two- and six-month post-stimulation language testing. 相似文献
16.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker1,2. Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain3,4 and ventral nerve cord of embryonic5,6, larval7,8,9,10, and adult Drosophila11,12,13,14. A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN515), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself. 相似文献
17.
Tami T. Tamashiro Clifton Lee Dalgard Kimberly R. Byrnes 《Journal of visualized experiments : JoVE》2012,(66)
Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity 1,2. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection 3. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop 4-6. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted.Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study.The principle and protocol of this methodology have been described in the literature 7,8. Additionally, alternate methodologies to isolate primary microglia are well described 9-12. Homogenized brain tissue may be separated by density gradient centrifugation to yield primary microglia 12. However, the centrifugation is of moderate length (45 min) and may cause cellular damage and activation, as well as, cause enriched microglia and other cellular populations. Another protocol has been utilized to isolate primary microglia in a variety of organisms by prolonged (16 hr) shaking while in culture 9-11. After shaking, the media supernatant is centrifuged to isolate microglia. This longer two-step isolation method may also perturb microglial function and activation. We chiefly utilize the following microglia isolation protocol in our laboratory for a number of reasons: (1) primary microglia simulate in vivo biology more faithfully than immortalized rodent microglia cell lines, (2) nominal mechanical disruption minimizes potential cellular dysfunction or activation, and (3) sufficient yield can be obtained without passage of the mixed glial cell cultures.It is important to note that this protocol uses brain tissue from neonatal rat pups to isolate microglia and that using older rats to isolate microglia can significantly impact the yield, activation status, and functional properties of isolated microglia. There is evidence that aging is linked with microglia dysfunction, increased neuroinflammation and neurodegenerative pathologies, so previous studies have used ex vivo adult microglia to better understand the role of microglia in neurodegenerative diseases where aging is important parameter. However, ex vivo microglia cannot be kept in culture for prolonged periods of time. Therefore, while this protocol extends the life of primary microglia in culture, it should be noted that the microglia behave differently from adult microglia and in vitro studies should be carefully considered when translated to an in vivo setting. 相似文献
18.
Inflammation is a fundamental aspect of many human diseases. In this video report, we demonstrate non-invasive bioluminescence imaging techniques that distinguish acute and chronic inflammation in mouse models. With tissue damage or pathogen invasion, neutrophils are the first line of defense, playing a major role in mediating the acute inflammatory response. As the inflammatory reaction progresses, circulating monocytes gradually migrate into the site of injury and differentiate into mature macrophages, which mediate chronic inflammation and promote tissue repair by removing tissue debris and producing anti-inflammatory cytokines. Intraperitoneal injection of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, sodium salt) enables detection of acute inflammation largely mediated by tissue-infiltrating neutrophils. Luminol specifically reacts with the superoxide generated within the phagosomes of neutrophils since bioluminescence results from a myeloperoxidase (MPO) mediated reaction. Lucigenin (bis-N-methylacridinium nitrate) also reacts with superoxide in order to generate bioluminescence. However, lucigenin bioluminescence is independent of MPO and it solely relies on phagocyte NADPH oxidase (Phox) in macrophages during chronic inflammation. Together, luminol and lucigenin allow non-invasive visualization and longitudinal assessment of different phagocyte populations across both acute and chronic inflammatory phases. Given the important role of inflammation in a variety of human diseases, we believe this non-invasive imaging method can help investigate the differential roles of neutrophils and macrophages in a variety of pathological conditions. 相似文献
19.
Robart Babona-Pilipos Milos R. Popovic Cindi M. Morshead 《Journal of visualized experiments : JoVE》2012,(68)
The discovery of neural stem and progenitor cells (collectively termed neural precursor cells) (NPCs) in the adult mammalian brain has led to a body of research aimed at utilizing the multipotent and proliferative properties of these cells for the development of neuroregenerative strategies. A critical step for the success of such strategies is the mobilization of NPCs toward a lesion site following exogenous transplantation or to enhance the response of the endogenous precursors that are found in the periventricular region of the CNS. Accordingly, it is essential to understand the mechanisms that promote, guide, and enhance NPC migration. Our work focuses on the utilization of direct current electric fields (dcEFs) to promote and direct NPC migration - a phenomenon known as galvanotaxis. Endogenous physiological electric fields function as critical cues for cell migration during normal development and wound repair. Pharmacological disruption of the trans-neural tube potential in axolotl embryos causes severe developmental malformations1. In the context of wound healing, the rate of repair of wounded cornea is directly correlated with the magnitude of the epithelial wound potential that arises after injury, as shown by pharmacological enhancement or disruption of this dcEF2-3. We have demonstrated that adult subependymal NPCs undergo rapid and directed cathodal migration in vitro when exposed to an externally applied dcEF. In this protocol we describe our lab''s techniques for creating a simple and effective galvanotaxis assay for high-resolution, long-term observation of directed cell body translocation (migration) on a single-cell level. This assay would be suitable for investigating the mechanisms that regulate dcEF transduction into cellular motility through the use of transgenic or knockout mice, short interfering RNA, or specific receptor agonists/antagonists. 相似文献
20.
Pierangela Giustetto Miriam Filippi Mauro Castano Enzo Terreno 《Journal of visualized experiments : JoVE》2015,(97)
Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive performance-competitive means for cortical and internal brain imaging, retaining a significant potential in many neurologic fields. 相似文献