首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition.

Methods

To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes.

Results

Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear.

Conclusion

Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.  相似文献   

2.

Introduction

Long-term drug delivery to the inner ear may be achieved by functionalizing cochlear implant (CI) electrodes with cells providing neuroprotective factors. However, effective strategies in order to coat implant surfaces with cells need to be developed. Our vision is to make benefit of electromagnetic field attracting forces generated by CI electrodes to bind BDNF-secreting cells that are labelled with magnetic beads (MB) onto the electrode surfaces. Thus, the effect of MB-labelling on cell viability and BDNF production were investigated.

Materials and Methods

Murine NIH 3T3 fibroblasts—genetically modified to produce BDNF—were labelled with MB.

Results

Atomic force and bright field microscopy illustrated the internalization of MB by fibroblasts after 24 h of cultivation. Labelling cells with MB did not expose cytotoxic effects on fibroblasts and allowed adhesion on magnetic surfaces with sufficient BDNF release.

Discussion

Our data demonstrate a novel approach for mediating enhanced long-term adhesion of BDNF-secreting fibroblasts on model electrode surfaces for cell-based drug delivery applications in vitro and in vivo. This therapeutic strategy, once transferred to cells suitable for clinical application, may allow the biological modifications of CI surfaces with cells releasing neurotrophic or other factors of interest.  相似文献   

3.

Background

The Bone Morphogenetic Protein (BMP) genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.

Methodology/Principal Findings

We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b−/−) embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.

Conclusions/Significance

Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.  相似文献   

4.

Background

The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes.

Methodology/Principal Findings

Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis.

Conclusions/Significance

Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.  相似文献   

5.

Background

Magnetic nanoparticles (NPs) loaded with antitumor drugs in combination with an external magnetic field (EMF)-guided delivery can improve the efficacy of treatment and may decrease serious side effects. The purpose of this study was 1) to investigate application of PEG modified GMNPs (PGMNPs) as a drug carrier of the chemotherapy compound doxorubicin (DOX) in vitro; 2) to evaluate the therapeutic efficiency of DOX-conjugated PGMNPs (DOX-PGMNPs) using an EMF-guided delivery in vivo.

Methods

First, DOX-PGMNPs were synthesized and the cytotoxicity of DOX-PGMNPs was assessed in vitro. Second, upon intravenous administration of DOX-PMGPNs to H22 hepatoma cell tumor-bearing mice, the DOX biodistribution in different organs (tissues) was measured. The antitumor activity was evaluated using different treatment strategies such as DOX-PMGPNs or DOX-PMGPNs with an EMF-guided delivery (DOX-PGMNPs-M).

Results

The relative tumor volumes in DOX-PGMNPs-M, DOX-PGMNPs, and DOX groups were 5.46±1.48, 9.22±1.51, and 14.8±1.64, respectively (each p<0.05), following treatment for 33 days. The life span of tumor-bearing mice treated with DOX-PGMNPs-M, DOX-PGMNPs, and DOX were 74.8±9.95, 66.1±13.5, and 31.3±3.31 days, respectively (each p<0.05).

Conclusion

This simple and adaptive nanoparticle design may accommodate chemotherapy for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers in the near future.  相似文献   

6.

Purpose

Macromolecular prodrugs obtained by covalently conjugating small molecular drugs with polymeric carriers were proven to accomplish controlled and sustained release of the therapeutic agents in vitro and in vivo. Polyethylene glycol (PEG) has been extensively used due to its low toxicity, low immunogenicity and high biocompatibility. However, for linear PEG macromolecules, the number of available hydroxyl groups for drug coupling does not change with the length of polymeric chain, which limits the application of PEG for drug conjugation purposes. To increase the drug loading and prolong the retention time of 5-fluorouracil (5-Fu), a macromolecular prodrug of 5-Fu, 5-fluorouracil-1 acid-PAE derivative (5-FA-PAE) was synthesized and tested for the antitumor activity in vivo.

Methods

PEG with a molecular weight of 38 kDa was selected to synthesize the multi-hydroxyl polyethylene glycol derivative (PAE) through an addition reaction. 5-fluorouracil-1 acetic acid (5-FA), a 5-Fu derivative was coupled with PEG derivatives via ester bond to form a macromolecular prodrug, 5-FA-PAE. The in vitro drug release, pharmacokinetics, in vivo distribution and antitumor effect of the prodrug were investigated, respectively.

Results

The PEG-based prodrug obtained in this study possessed an exceedingly high 5-FA loading efficiency of 10.58%, much higher than the maximum drug loading efficiency of unmodified PEG with the same molecular weight, which was 0.98% theoretically. Furthermore, 5-FA-PAE exhibited suitable sustained release in tumors.

Conclusion

This study provides a new approach for the development of the delivery to tumors of anticancer agents with PEG derivatives.  相似文献   

7.
8.

Background

Conventional chemotherapy agent such as doxorubicin (DOX) is of limited clinical use because of its inherently low selectivity, which can lead to systemic toxicity in normal healthy tissue.

Methods

A pH stimuli-sensitive conjugate based on polyethylene glycol (PEG) with covalently attachment doxorubicin via hydrazone bond (PEG-hyd-DOX) was prepared for tumor targeting delivery system. While PEG-DOX conjugates via amid bond (PEG-ami-DOX) was synthesized as control.

Results

The synthetic conjugates were confirmed by proton nuclear magnetic resonance (NMR) spectroscopy, the release profile of DOX from PEG-hyd-DOX was acid-liable for the hydrazone linkage between DOX and PEG, led to different intracellular uptake route; intracellular accumulation of PEG-hyd-DOX was higher than PEG-ami-DOX due to its pH-triggered profile, and thereby more cytotoxicity against MCF-7, MDA-MB-231 (breast cancer models) and HepG2 (hepatocellular carcinoma model) cell lines. Following the in vitro results, we xenografted MDA-MB-231 cell onto SCID mice, PEG-hyd-DOX showed stronger antitumor efficacy than free DOX and was tumor-targeting.

Conclusions

Results from these in vivo experiments were consistent with our in vitro results; suggested this pH-triggered PEG-hyd-DOX conjugate could target DOX to tumor tissues and release free drugs by acidic tumor environment, which would be potent in antitumor drug delivery.  相似文献   

9.

Background

The homeobox gene Prox1 is required for lens, retina, pancreas, liver, and lymphatic vasculature development and is expressed in inner ear supporting cells and neurons.

Methodology/Principal Findings

We have investigated the role of Prox1 in the developing mouse ear taking advantage of available standard and conditional Prox1 mutant mouse strains using Tg(Pax2-Cre) and Tg(Nes-Cre). A severe reduction in the size of the canal cristae but not of other vestibular organs or the cochlea was identified in the E18.5 Prox1Flox/Flox; Tg(Pax2-Cre) mutant ear. In these mutant embryos, hair cell differentiated; however, their distribution pattern was slightly disorganized in the cochlea where the growth of type II nerve fibers to outer hair cells along Prox1 expressing supporting cells was severely disrupted. In the case of Nestin-Cre, we found that newborn Prox1Flox/Flox; Tg(Nestin-Cre) exhibit only a disorganized innervation of outer hair cells despite apparently normal cellular differentiation of the organ of Corti, suggesting a cell-autonomous function of Prox1 in neurons.

Conclusions/Significance

These results identify a dual role of Prox1 during inner ear development; growth of the canal cristae and fiber guidance of Type II fibers along supporting cells in the cochlea.  相似文献   

10.

Purpose

To determine whether exposure of sodium fluorescein (NaF) to the choroid-retina region in the posterior segment of the eye is greater with suprachoroidal injection when compared to intravitreal and transscleral routes.

Methods

Suprachoroidal injection, a new approach for drug delivery to the posterior segment of the eye was validated using a 34 G needle and Indian ink injections in Sprague Dawley rats, followed by histology. Delivery of NaF was compared in Sprague Dawley rats after suprachoroidal, posterior subconjunctival, or intravitreal injections. NaF levels were monitored noninvasively up to 6 hours using Fluorotron Master™, an ocular fluorophotometer Pharmacokinetic parameters were estimated using WinNonlin.

Results

Histological analysis indicated localization of India ink to the suprachoroidal space below sclera, following injection. NaF delivery to choroid-retina was in the order: suprachoroidal > intravitreal >posterior subconjunctival injection. Peak NaF concentration (Cmax) in choroid-retina was 36-fold (p = 0.001) and 25-fold (p = 0.001) higher after suprachoroidal (2744±1111 ng/ml) injection when compared to posterior subconjunctival (76±6 ng/ml) and intravitreal (108±39 ng/ml) injections, respectively. NaF exposure (AUC0–360min) to choroid-retina after suprachoroidal injection was 6-fold (p = 0.001) and 2-fold (p = 0.03) higher than posterior subconjunctival and intravitreal injections, respectively. Choroid-retina Tmax was observed immediately after dosing with suprachoroidal injections and at 10 and 27.5 minutes, respectively, with subconjunctival and intravitreal injections.

Conclusions

Suprachoroidal injections are feasible in a rat model. Suprachoroidal injections resulted in the highest bioavailability, that is, the extent and rate of delivery of NaF to choroid-retina, when compared to intravitreal and posterior subconjunctival injections. Ocular fluorophotometry is useful for noninvasive monitoring of NaF in rats following administration by various routes including suprachoroidal route.  相似文献   

11.

Purpose

Small injection ports for mice are increasingly used for drug testing or when administering contrast agents. Commercially available mini-ports are expensive single-use items that cause imaging-artifacts. We developed and tested an artifact-free, low-cost, vascular access mini-port (VAMP) for mice.

Procedures

Leakage testing of the VAMP was conducted with high speed bolus injections of different contrast agents. VAMP-induced artifacts were assessed using a micro-CT and a small animal MRI (9.4T) scanner ex vivo. Repeated contrast administration was performed in vivo.

Results

With the VAMP there was no evidence of leakage with repeated punctures, high speed bolus contrast injections, and drawing of blood samples. In contrast to the tested commercially available ports, the VAMP did not cause artifacts with MRI or CT imaging.

Conclusions

The VAMP is an alternative to commercially available mini-ports and has useful applications in animal research involving imaging procedures and contrast agent testing.  相似文献   

12.

Background

Epithelial ovarian cancer is the leading cause of gynecologic cancer deaths. Most patients respond initially to platinum-based chemotherapy after surgical debulking, however relapse is very common and ultimately platinum resistance emerges. Understanding the mechanism of tumor growth, metastasis and drug resistant relapse will profoundly impact the therapeutic management of ovarian cancer.

Methods/Principal Findings

Using patient tissue microarray (TMA), in vitro and in vivo studies we report a role of of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme in ovarian carcinoma. We report here that the expression of cystathionine-beta-synthase (CBS), a sulfur metabolism enzyme, is common in primary serous ovarian carcinoma. The in vitro effects of CBS silencing can be reversed by exogenous supplementation with the GSH and H2S producing chemical Na2S. Silencing CBS in a cisplatin resistant orthotopic model in vivo by nanoliposomal delivery of CBS siRNA inhibits tumor growth, reduces nodule formation and sensitizes ovarian cancer cells to cisplatin. The effects were further corroborated by immunohistochemistry that demonstrates a reduction of H&E, Ki-67 and CD31 positive cells in si-RNA treated as compared to scrambled-RNA treated animals. Furthermore, CBS also regulates bioenergetics of ovarian cancer cells by regulating mitochondrial ROS production, oxygen consumption and ATP generation. This study reports an important role of CBS in promoting ovarian tumor growth and maintaining drug resistant phenotype by controlling cellular redox behavior and regulating mitochondrial bioenergetics.

Conclusion

The present investigation highlights CBS as a potential therapeutic target in relapsed and platinum resistant ovarian cancer.  相似文献   

13.

Background

At least five bHLH genes regulate cell fate determination and differentiation of sensory neurons, hair cells and supporting cells in the mammalian inner ear. Cross-regulation of Atoh1 and Neurog1 results in hair cell changes in Neurog1 null mice although the nature and mechanism of the cross-regulation has not yet been determined. Neurod1, regulated by both Neurog1 and Atoh1, could be the mediator of this cross-regulation.

Methodology/Principal Findings

We used Tg(Pax2-Cre) to conditionally delete Neurod1 in the inner ear. Our data demonstrate for the first time that the absence of Neurod1 results in formation of hair cells within the inner ear sensory ganglia. Three cell types, neural crest derived Schwann cells and mesenchyme derived fibroblasts (neither expresses Neurod1) and inner ear derived neurons (which express Neurod1) constitute inner ear ganglia. The most parsimonious explanation is that Neurod1 suppresses the alternative fate of sensory neurons to develop as hair cells. In the absence of Neurod1, Atoh1 is expressed and differentiates cells within the ganglion into hair cells. We followed up on this effect in ganglia by demonstrating that Neurod1 also regulates differentiation of subtypes of hair cells in the organ of Corti. We show that in Neurod1 conditional null mice there is a premature expression of several genes in the apex of the developing cochlea and outer hair cells are transformed into inner hair cells.

Conclusions/Significance

Our data suggest that the long noted cross-regulation of Atoh1 expression by Neurog1 might actually be mediated in large part by Neurod1. We suggest that Neurod1 is regulated by both Neurog1 and Atoh1 and provides a negative feedback for either gene. Through this and other feedback, Neurod1 suppresses alternate fates of neurons to differentiate as hair cells and regulates hair cell subtypes.  相似文献   

14.

Background

Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood.

Methodology/Principal Findings

This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid.

Conclusions/Significance

This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance.  相似文献   

15.

Background

Biomarkers predicting tuberculosis treatment response and cure would facilitate drug development. This study investigated expression patterns of the co-stimulation molecule NKG2D in human tuberculosis and treatment to determine its potential usefulness as a host biomarker of tuberculosis drug efficacy.

Methods

Tuberculosis patients (n = 26) were recruited in Lahore, Pakistan, at diagnosis and followed up during treatment. Household contacts (n = 24) were also recruited. NKG2D expression was measured by qRT-PCR in RNA samples both ex vivo and following overnight mycobacterial stimulation in vitro. Protein expression of NKG2D and granzyme B was measured by flow cytometry.

Results

NKG2D expression in newly diagnosed tuberculosis patients was similar to household contacts in ex vivo RNA, but was higher following in vitro stimulation. The NKG2D expression was dramatically reduced by intensive phase chemotherapy, in both ex vivo blood RNA and CD8+ T cell protein expression, but then reverted to higher levels after the continuation phase in successfully treated patients.

Conclusion

The changes in NKG2D expression through successful treatment reflect modulation of the peripheral cytotoxic T cell response. This likely reflects firstly in vivo stimulation by live Mycobacterium tuberculosis, followed by the response to dead bacilli, antigen-release and finally immunopathology resolution. Such changes in host peripheral gene expression, alongside clinical and microbiological indices, could be developed into a biosignature of tuberculosis drug-induced cure to be used in future clinical trials.  相似文献   

16.

Background

The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.

Methodology/Principal Findings

Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.

Conclusions/Significance

The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.  相似文献   

17.

Background

The zona pellucida (ZP) domain is part of many extracellular proteins with diverse functions from structural components to receptors. The mammalian β-tectorin is a protein of 336 amino acid residues containing a single ZP domain and a putative signal peptide at the N-terminus of the protein. It is 1 component of a gel-like structure called the tectorial membrane which is involved in transforming sound waves into neuronal signals and is important for normal auditory function. β-Tectorin is specifically expressed in the mammalian and avian inner ear.

Methodology/Principal Findings

We identified and cloned the gene encoding zebrafish β-tectorin. Through whole-mount in situ hybridization, we demonstrated that β-tectorin messenger RNA was expressed in the otic placode and specialized sensory patch of the inner ear during zebrafish embryonic stages. Morpholino knockdown of zebrafish β-tectorin affected the position and number of otoliths in the ears of morphants. Finally, swimming behaviors of β-tectorin morphants were abnormal since the development of the inner ear was compromised.

Conclusions/Significance

Our results reveal that zebrafish β-tectorin is specifically expressed in the zebrafish inner ear, and is important for regulating the development of the zebrafish inner ear. Lack of zebrafish β-tectorin caused severe defects in inner ear formation of otoliths and function.  相似文献   

18.

Background

It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations.

Methodology

We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo.

Principal Findings

We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI) = 2.53). Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively). A highly synergistic effect (CI = 0.15) was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg) lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo.

Conclusion/Significance

Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be launched.  相似文献   

19.

Background

Epidermal growth factor receptor (EGFR) is overexpressed in many solid tumor types, such as ovarian carcinoma. Immunoliposome based drug targeting has shown promising results in drug delivery to the tumors. However, the ratio of tumor-to-normal tissue concentrations should be increased to minimize the adverse effects of cytostatic drugs.

Methodology/Principal Findings

We studied the EGFR-targeted doxorubicin immunoliposomes using pre-targeting and local intraperitoneal (i.p.) administration of the liposomes. This approach was used to increase drug delivery to tumors as compared to direct intravenous (i.v.) administration of liposomes. EGFR antibodies were attached on the surface of PEG coated liposomes using biotin-neutravidin binding. Receptor mediated cellular uptake and cytotoxic efficacy of EGFR-targeted liposomes were investigated in human ovarian adenocarcinoma (SKOV-3 and SKOV3.ip1) cells. In vivo distribution of the liposomes in mice was explored using direct and pre-targeting approaches and SPECT/CT imaging. Targeted liposomes showed efficient and specific receptor-mediated binding to ovarian carcinoma cells in vitro, but the difference in cytotoxicity between targeted and non-targeted liposomes remained small. The relatively low cytotoxic efficacy is probably due to insufficient doxorubicin release from the liposomes rather than lack of target binding. Tumor uptake of targeted liposomes in vivo was comparable to that of non-targeted liposomes after both direct and pre-targeting administration. For both EGFR-targeted and non-targeted liposomes, the i.p. administration increased liposome accumulation to the tumors compared to i.v. injections.

Conclusions/Significance

Intraperitoneal administration of liposomes may be a beneficial approach to treat the tumors in the abdominal cavity. The i.p. pre-targeting method warrants further studies as a potential approach in cancer therapy.  相似文献   

20.

Background

Intra-lesional injections of corticosteroids, interferon, and chemotherapeutic drugs are currently the most popular treatments of hypertrophic scar formation. However, these drugs can only be used after HS is formed, and not during the inflammatory phase of wound healing, which regulates the HS forming process.

Objective

To investigate a new, effective, combining therapeutic and safe drug for early intervention and treatment for hypertrophic scars.

Methods

Cell viability assay and flow cytometric analysis were studied in vitro. Animal studies were done to investigate the combining therapeutic effects of 20(S)-ginsenoside Rg3 (Rg3) on the inflammatory phase of wound healing and HS formation.

Results

In vitro studies showed that Rg3 can inhibit HS fibroblasts proliferation and induce HSF apoptosis in a concentration-dependent manner. In vivo studies demonstrated that Rg3 can limit the exaggerated inflammation, and do not delay the wound healing process, which indicates that Rg3 could be used as an early intervention to reduce HS formation. Topical injection of 4 mg/mL Rg3 can reduce HS formation by 34%. Histological and molecular studies revealed that Rg3 injection inhibits fibroblasts proliferation thus reduced the accumulation of collagen fibers, and down-regulates VEGF expression in the HS tissue.

Conclusion

Rg3 can be employed as an early intervention and a combining therapeutic drug to reduce inflammation and HS formation as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号