首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cladistic analysis of Medusozoa and cnidarian evolution   总被引:2,自引:0,他引:2  
Abstract. A cladistic analysis of 87 morphological and life history characters of medusozoan cnidarians, rooted with Anthozoa, results in the phylogenetic hypothesis (Anthozoa (Hydrozoa (Scyphozoa (Staurozoa, Cubozoa)))). Staurozoa is a new class of Cnidaria consisting of Stauromedusae and the fossil group Conulatae. Scyphozoa is redefined as including those medusozoans characterized by strobilation and ephyrae (Coronatae, Semaeostomeae, and Rhizostomeae). Within Hydrozoa, Limnomedusae is identified as either the earliest diverging hydrozoan lineage or as the basal group of either Trachylina (Actinulida (Trachymedusae (Narcomedusae, Laingiomedusae))) or Hydroidolina (Leptothecata (Siphonophorae, Anthoathecata)). Cladistic results are highly congruent with recently published phylogenetic analyses based on 18S molecular characters. We propose a phylogenetic classification of Medusozoa that is consistent with phylogenetic hypotheses based on our cladistic results, as well as those derived from 18S analyses. Optimization of the characters presented in this analysis are used to discuss evolutionary scenarios. The ancestral cnidarian probably had a sessile biradial polyp as an adult form. The medusa is inferred to be a synapomorphy of Medusozoa. However, the ancestral process (metamorphosis of the apical region of the polyp or lateral budding involving an entocodon) could not be inferred unequivocally. Similarly, character states for sense organs and nervous systems could not be inferred for the ancestral medusoid of Medusozoa.  相似文献   

2.
A newly compiled data set of nearly complete sequences of the large subunit of the nuclear ribosome (LSU or 28S) sampled from 31 diverse medusozoans greatly clarifies the phylogenetic history of Cnidaria. These data have substantial power to discern among many of the competing hypotheses of relationship derived from prior work. Moreover, LSU data provide strong support at key nodes that were equivocal based on other molecular markers. Combining LSU sequences with those of the small subunit of the nuclear ribosome (SSU or 18S), we present a detailed working hypothesis of medusozoan relationships and discuss character evolution within this diverse clade. Stauromedusae, comprising the benthic, so-called stalked jellyfish, appears to be the sister group of all other medusozoans, implying that the free-swimming medusa stage, the motor nerve net, and statocysts of ecto-endodermal origin are features derived within Medusozoa. Cubozoans, which have had uncertain phylogenetic affinities since the elucidation of their life cycles, form a clade-named Acraspeda-with the scyphozoan groups Coronatae, Rhizostomeae, and Semaeostomeae. The polyps of both cubozoans and hydrozoans appear to be secondarily simplified. Hydrozoa is comprised by two well-supported clades, Trachylina and Hydroidolina. The position of Limnomedusae within Trachylina indicates that the ancestral hydrozoan had a biphasic life cycle and that the medusa was formed via an entocodon. Recently hypothesized homologies between the entocodon and bilaterian mesoderm are therefore suspect. Laingiomedusae, which has often been viewed as a close ally of the trachyline group Narcomedusae, is instead shown to be unambiguously a member of Hydroidolina. The important model organisms of the Hydra species complex are part of a clade, Aplanulata, with other hydrozoans possessing direct development not involving a ciliated planula stage. Finally, applying phylogenetic mixture models to our data proved to be of little additional value over a more traditional phylogenetic approach involving explicit hypothesis testing and bootstrap analyses under multiple optimality criteria. [18S; 28S; Cubozoa; Hydrozoa; medusa; molecular systematics; polyp; Scyphozoa; Staurozoa.].  相似文献   

3.
To investigate the evolution of cnidarian life cycles, data from the small subunit of the ribosome are used to derive a phylogenetic hypothesis for Medusozoa. These data indicate that Cnidaria is monophyletic and composed of Anthozoa and Medusozoa. While Cubozoa and Hydrozoa are well supported clades, Scyphozoa appears to be paraphyletic. Stauromedusae is possibly the sister group of either Cubozoa or all other medusozoans. The phylogenetic results suggest that: the polyp probably preceded the medusa in the evolution of Cnidaria; within Hydrozoa, medusa development involving the entocodon is ancestral; within Trachylina, the polyp was lost and subsequently regained in the parasitic narcomedusans; within Siphonophorae, the float originated prior to swimming bells; stauromedusans are not likely to be descended from ancestors that produced medusae by strobilation; and cubozoan polyps are simplified from those of their ancestors, which possessed polyps with gastric septa and four mesogleal muscle bands and peristomial pits.  相似文献   

4.
The phylum Cnidaria is usually divided into five classes: Anthozoa, Cubozoa, Hydrozoa, Scyphozoa and Staurozoa. The class Anthozoa is subdivided into two subclasses: Hexacorallia and Octocorallia. Morphological and molecular studies based on nuclear rDNA and recent phylogenomic studies support the monophyly of Anthozoa. On the other hand, molecular studies based on mitochondrial markers, including two recent studies based on mitogenomic data, supported the paraphyly of Anthozoa, and positioned Octocorallia as sister group to Medusozoa (the monophyletic group of Cubozoa, Hydrozoa and Scyphozoa). On the basis of 51 nuclear orthologs from four hexacorallians, four octocorallians, two hydrozoans and one scyphozoan (with poriferans and Homo sapiens as out‐groups), we built a multilocus alignment of 9 873 amino acids, which aimed at minimizing missing data and hidden paralogy, in order to understand the discrepancy between nuclear and mitochondrial phylogenies. Our phylogenetic analyses strongly supported the monophyly of Anthozoa. We compared the level of substitution saturation between our data set, the data sets of two recent phylogenomic studies and one of a mitogenomic study. We found that mitochondrial DNA is more saturated than nuclear DNA at all the phylogenetic levels studied. Our results emphasize the need for a good evaluation of phylogenetic signal.  相似文献   

5.
The benthic polyp phase of Medusozoa (Staurozoa, Cubozoa, Scyphozoa, and Hydrozoa) has endoskeletal or exoskeletal support systems, but their composition, development, and evolution is poorly known. In this contribution the variation in synthesis, structure, and function of the medusozoan exoskeleton was examined. In addition, an evolutionary hypothesis for its origin and diversification is proposed for both extinct and extant medusozoans. We also critically reviewed the literature and included data from our own histological and microstructural analyses of some groups. Chitin is a characteristic component of exoskeleton in Medusozoa, functioning as support, protection, and a reserve for various ions and inorganic and organic molecules, which may persuade biomineralization, resulting in rigid biomineralized exoskeletons. Skeletogenesis in Medusozoa dates back to the Ediacaran, when potentially synergetic biotic, abiotic, and physiological processes resulted in development of rigid structures that became the exoskeleton. Of the many types of exoskeletons that evolved, the corneous (chitin‐protein) exoskeleton predominates today in polyps of medusozoans, with its greatest variation and complexity in the polyps of Hydroidolina. A new type of bilayered exoskeleton in which there is an exosarc complementing the perisarc construction is here described.  相似文献   

6.
Dawson  M. N. 《Hydrobiologia》2004,522(1-3):249-260
Statistical phylogenetic analyses of 111 5.8S and partial-28S ribosomal DNA sequences (total aligned length=434 nucleotides) including jellyfishes representing approximately 14 of known scyphozoan morphospecies (21 genera, 62 families, and 100 orders) are presented. These analyses indicate stauromedusae constitute a fifth cnidarian class (Staurozoa) basal to a monophyletic Medusozoa (=Cubozoa, Hydrozoa, and Scyphozoa). Phylogenetic relationships among the medusozoans are generally poorly resolved, but support is found for reciprocal monophyly of the Cubozoa, Hydrozoa, Coronatae, and Discomedusae (=Semaeostomeae + Rhizostomeae). In addition, a survey of pairwise sequence differences in Internal Transcribed Spacer One within morphospecies indicates that scyphozoan species diversity may be approximately twice recent estimates based on morphological analyses. These results highlight difficulties with traditional morphological treatments including terminology that obfuscates homologies. By integrating molecular phylogenetic analyses with old and new morphological, behavioural, developmental, physiological, and other data, a much richer understanding of the biodiversity and evolution of jellyfishes is achievable.  相似文献   

7.
The evolution rates of mtDNA in early metazoans hold important implications for DNA barcoding. Here, we present a comprehensive analysis of intra- and interspecific COI variabilities in Porifera and Cnidaria (separately as Anthozoa, Hydrozoa, and Scyphozoa) using a data set of 619 sequences from 224 species. We found variation within and between species to be much lower in Porifera and Anthozoa compared to Medusozoa (Hydrozoa and Scyphozoa), which has divergences similar to typical metazoans. Given that recent evidence has shown that fungi also exhibit limited COI divergence, slow-evolving mtDNA is likely to be plesiomorphic for the Metazoa. Higher rates of evolution could have originated independently in Medusozoa and Bilateria or been acquired in the Cnidaria + Bilateria clade and lost in the Anthozoa. Low identification success and substantial overlap between intra- and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding. Caution is also advised for Porifera and Hydrozoa because of relatively low identification success rates as even threshold divergence that maximizes the “barcoding gap” does not improve identification success. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
The recent members of the phylum Cnidaria were analyzed with phylogenetic methodology and the help of the PAUP Computer program. The Cnidaria are established as a monophylum by their cnidocysts, planula larva, and a polyp stage. The Ctenophora were seen as the most probable sister group of the Cnidaria. Arguments for the monophyly of the cnidarian classes Anthozoa, Scyphozoa, Cubozoa, and Hydrozoa were providea. For the ground plan of the Cnidaria the following characters were postulated: triphasic life cycle consisting of a planula larva, a benthic polyp stage, and a sexually propagating medusa like stage. For the polyp a radial symmetry, lack of septae, and hollow tentacles were assumed. The original medusa probably was tetraradial and developed from the polyp stage by a total metamorphosis. Twelve polarized characters were used to generate cladograms. The most parsimonious one showed the Anthozoa as the first offshoot of the tree with the united Scyphozoa, Cubozoa and Hydrozoa forming its sister group. Within this sister group the Scyphozoa and Cubozoa were seen as sistergroups to each other. Both groups united are then the sistergroup of the Hydrozoa. A bootstrap analysis yielded the same tree with high probabilities for the internal nodes. Despite assuming a planktonic origin of the Cnidaria in this investigation, the resulting cladogram is also compatible with an evolution of the medusa stage within the Cnidaria after the splitting-off of the Anthozoa. The possible loss of the medusa stage in the Anthozoa is discussed.  相似文献   

11.

Background

Life cycles of medusozoan cnidarians vary widely, and have been difficult to document, especially in the most recently proposed class Staurozoa. However, molecular data can be a useful tool to elucidate medusozoan life cycles by tying together different life history stages.

Methodology/Principal Findings

Genetic data from fast-evolving molecular markers (mitochondrial 16S, nuclear ITS1, and nuclear ITS2) show that animals that were presumed to be a hydrozoan, Microhydrula limopsicola (Limnomedusae, Microhydrulidae), are actually an early stage of the life cycle of the staurozoan Haliclystus antarcticus (Stauromedusae, Lucernariidae).

Conclusions/Significance

Similarity between the haplotypes of three markers of Microhydrula limopsicola and Haliclystus antarcticus settles the identity of these taxa, expanding our understanding of the staurozoan life cycle, which was thought to be more straightforward and simple. A synthetic discussion of prior observations makes sense of the morphological, histological and behavioral similarities/congruence between Microhydrula and Haliclystus. The consequences are likely to be replicated in other medusozoan groups. For instance we hypothesize that other species of Microhydrulidae are likely to represent life stages of other species of Staurozoa.  相似文献   

12.
Trachylina is a group of cnidarians, a subclass of Hydrozoa. Despite the low species diversity of this group, its representatives are characterized by diversity of life cycles. Trachylina have populated various environments, from deep ocean to fresh water ecosystems. Polyps of Trachylina are either very small or absent in the life cycle, which distinguishes this group from the majority of other Hydrozoa. Trachylina are also highly diverse and have a number of features that are unusual for cnidarians. A number of representatives of this group are characterized by a small number of cells at the embryonic and larval stages. This phenomenon is well known for the representatives of phylogenetically distant taxa—Nematoda and Chordata (Tunicata). In addition, the development of Trachylina is characterized by a number of evolutionary changes that, apparently, make it possible to accelerate the formation of the definitive stage (medusa). Paradoxically, there is no one species among the representatives of this group that is studied in more or less detail. The purpose of our review is to summarize the scanty information on the Trachylina ontogeny and to demonstrate the importance of studying the ontogeny of this group for understanding the general rules of the evolution of development and life cycles of Metazoa.  相似文献   

13.
We determined the complete mitochondrial genome (mtDNA, mitogenome) of Pyropia tenera (Bangiales, Rhodophyta). Pyropia tenera mtDNA had a larger size (42,268 bp) than the mtDNA sequences of Porphyra and Pyropia reported previously, and encoded two ribosomal RNA genes [large subunit (rnl), small subunit (rns)], 24 transfer RNAs, four ribosomal proteins, and 17 genes involved in electron transport and oxidative phosphorylation. Moreover, four conserved open reading frames (ORFs) and six intronic ORFs (three in rnl and three in the cox1 gene) were also identified. In comparison with other Porphyra and Pyropia species, Py. tenera had four major structural changes in two gene loss/rearrangement regions [tRNA-Gln(uug)–tRNA-SeC(uca) and tRNA-Ala(ugc)–tRNA-Arg(ucu)] and two different patterns of exon, intron, and intronic ORFs (rnl and cox1). The unique features of Py. tenera mtDNA include the complete sequence of red algal mtDNA for investigating mtDNA evolution and developing molecular markers for species identification. In addition, red algal mtDNA can provide useful genetic information as a genetic reservoir for bioengineering.  相似文献   

14.
《Palaeoworld》2019,28(3):225-233
The Cambrian Fortunian fossil embryos exhibit embryonic development of ancient animals and hence have important bearings on evolutionary developmental biology. They have radial symmetry, and may be early representatives of cnidarians. Here we report new material of three-dimensionally phosphatized fossil embryos from the Fortunian Kuanchuanpu Formation and coeval strata in northern Sichuan and southern Shaanxi provinces, South China. The new material includes previously reported fossil embryos assignable to Pseudooides prima with biradial symmetry or pseudo-hexaradial symmetry, Quadrapyrgites quadratacris with tetraradial symmetry, and Olivooides multisulcatus with pentaradial symmetry. Additionally, we recovered two new types of fossil embryos, i.e., Embryo I with hexaradial symmetry and Embryo II with octaradial symmetry, and they are tentatively suggested to represent new cnidarians. In contrast to the diverse radial symmetry of the Fortunian cnidarians, modern cnidarians exhibit stable tetraradial symmetry in medusozoans, biradial symmetry in anthozoans, and bilateral symmetry in siphonophores (Hydrozoa). The current study supports the view that the tetraradial symmetry of modern medusozoans is a surviving remnant of their Fortunian relatives.  相似文献   

15.
Pseudocapritermes Kemner is a termite group that constructs subterranean gallery systems in topsoil. This genus is distributed in the Oriental region and contains 18 species. Dependence on the morphological measurements of soldiers makes the taxonomy of Pseudocapritermes difficult. In this study, we compared morphological characters of soldiers and adults of P. largus and P. sowerbyi. In addition, three fulllength mitochondrial genes (COI, COII, and 16S rRNA) were sequenced from a total of eight P. largus and P. sowerbyi colonies. Morphological comparison of soldiers showed that P. largus is larger than P. sowerbyi, but there was overlap in some measurements. In adults, the morphological characters of P. largus were congruent with those of P. sowerbyi. Sequence alignments of COI, COII, and 16S rRNA revealed a high pairwise genetic identity (ranging from 99.64 to 100%) between the two species, which suggested that P. largus and P. sowerbyi are the same species. Molecular phylogenetic analysis based on COII revealed that Pseudocapritermes belongs to the Termes group having soldiers with asymmetrical snapping mandibles and is more closely related to Sinocapritermes than to other Termes group genera distributed in China. Morphological similarity and genetic identity indicate that P. largus is a junior synonym of P. sowerbyi.  相似文献   

16.
17.
This is the first report of a complete mitochondrial genome sequence from a photosynthetic member of the stramenopiles, the chrysophyte alga Chrysodidymus synuroideus. The circular-mapping mitochondrial DNA (mtDNA) of 34 119 bp contains 58 densely packed genes (all without introns) and five unique open reading frames (ORFs). Protein genes code for components of respiratory chain complexes, ATP synthase and the mitoribosome, as well as one product of unknown function, encoded in many other protist mtDNAs (YMF16). In addition to small and large subunit ribosomal RNAs, 23 tRNAs are mtDNA-encoded, permitting translation of all codons present in protein-coding genes except ACN (Thr) and CGN (Arg). The missing tRNAs are assumed to be imported from the cytosol. Comparison of the C.synuroideus mtDNA with that of other stramenopiles allowed us to draw conclusions about mitochondrial genome organization, expression and evolution. First, we provide evidence that mitochondrial ORFs code for highly derived, unrecognizable versions of ribosomal or respiratory genes otherwise ‘missing’ in a particular mtDNA. Secondly, the observed constraints in mitochondrial genome rearrangements suggest operon-based, co-ordinated expression of genes functioning in common biological processes. Finally, stramenopile mtDNAs reveal an unexpectedly low variability in genome size and gene complement, testifying to substantial differences in the tempo of mtDNA evolution between major eukaryotic lineages.  相似文献   

18.
Breeding redpoll finches (Aves: Carduelinae) show extensive plumage and size variability and, in many cases, a plumage polymorphism that is not related to age or sex. This has been ascribed to extreme phenotypic variation within a single taxon or to moderate variability within distinct taxa coupled with hybridization. The predominant view favors the recognition of two largely sympatric species: Carduelis flammea, comprised of four well-marked subspecies—flammea, cabaret, islandica, and rostrata; and C. hornemanni, comprised of two subspecies—hornemanni and exilipes. We studied representative samples of these putative subspecies (except islandica) for variation in mitochondrial DNA (mtDNA). Using 20 informative restriction enzymes that recognized 124 sites (642 base pairs [bp] of sequence or ≈ 3.7% of the molecule), we identified 17 RFLP haplotypes in the 31 individuals surveyed. The haplotypes formed a simple phylogenetic network with most clones diverging by a single site difference from a common haplotype found in almost half of the individuals. Within populations and taxa, levels of mtDNA diversity were similar to those observed in other avian species. The pattern of mtDNA divergence among populations was statistically unrelated to their geographic or traditional taxonomic relationships, and the estimated distance between the two traditionally recognized species was very small relative to those typically observed among avian sister species.  相似文献   

19.
Drosophila incompta belongs to the flavopilosa group of Drosophila, and has a restricted ecology, being adapted to flowers of Cestrum as feeding and oviposition sites. We sequenced, assembled, and characterized the complete mitochondrial genome (mtDNA) of D. incompta. In addition, we performed phylogenomic and polymorphism analyses to assess evolutionary diversification of this species. Our results suggest that this genome is syntenic with the other published mtDNA of Drosophila. This molecule contains 15,641 bp and encompasses two rRNA, 22 tRNA and 13 protein-coding genes. Regarding nucleotide composition, we found a high A?T bias (76.6 %). The recovered phylogenies indicate D. incompta in the virilisrepleta radiation, as sister to the virilis or repleta groups. The most interesting result is the high degree of polymorphism found throughout the D. incompta mitogenome, revealing pronounced intrapopulational variation. Furthermore, intraspecific nucleotide diversity levels varied between different regions of the genome, thus allowing the use of different mitochondrial molecular markers for analysis of population structure of this species.  相似文献   

20.
The deepwater stauromedusan Lucernaria janetae n. sp is described from adult and juvenile specimens collected from the East Pacific Rise. Lucernaria janetae is the first species in the genus recorded from the Pacific Ocean, and differs from its congeners in size and morphology. Mitochondrial (16S) and nuclear (SSU) ribosomal gene sequences from L. janetae were analyzed with those of representative stauromedusan taxa to evaluate stauromedusan monophyly. Both genes recovered a strongly monophyletic Stauromedusae that is the sister group to all other medusozoans. Support of these hypotheses is robust to method of phylogenetic reconstruction and to outgroup selection, buttressing the argument that Stauromedusae should be recognized as the class Staurozoa. The molecular markers used here favor the same topology of relationships among our samples and clearly distinguished between two species, Haliclystus sanjuanensis and H. octoradiatus, that have been considered synonymous by many workers. A stable systematic framework for Stauromedusae appears achievable through comprehensive study of both morphological and sequence data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号