首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies implicate dietary soy isoflavones as breast cancer preventives, especially due to their anti-estrogenic properties. However, soy isoflavones may also have a role in promoting breast cancer, which has yet to be clarified. We previously reported that equol, a metabolite of the soy isoflavone daidzein, may advance breast cancer potential via up-regulation of the eukaryotic initiation factor 4GI (eIF4GI). In estrogen receptor negative (ER−) metastatic breast cancer cells, equol induced elevated levels of eIF4G, which were associated with increased cell viability and the selective translation of mRNAs that use non-canonical means of initiation, including internal ribosome entry site (IRES), ribosome shunting, and eIF4G enhancers. These mRNAs typically code for oncogenic, survival, and cell stress molecules. Among those mRNAs translationally increased by equol was the oncogene and eIF4G enhancer, c-Myc. Here we report that siRNA-mediated knockdown of c-Myc abrogates the increase in cancer cell viability and mammosphere formation by equol, and results in a significant down-regulation of eIF4GI (the major eIF4G isoform), as well as reduces levels of some, but not all, proteins encoded by mRNAs that are translationally stimulated by equol treatment. Knockdown of eIF4GI also markedly reduces an equol-mediated increase in IRES-dependent mRNA translation and the expression of specific oncogenic proteins. However, eIF4GI knockdown did not reciprocally affect c-Myc levels or cell viability. This study therefore implicates c-Myc as a potential regulator of the cancer-promoting effects of equol via up-regulation of eIF4GI and selective initiation of translation on mRNAs that utilize non-canonical initiation, including certain oncogenes.  相似文献   

2.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

3.
Control of translation in eukaryotes is complex, depending on the binding of various factors to mRNAs. Available data for subsets of mRNAs that are translationally up- and down-regulated in yeast eIF4E-binding protein (4E-BP) deletion mutants are coupled with reported mRNA secondary structure measurements to investigate whether 5'-UTR secondary structure varies between the subsets. Genes with up-regulated translational efficiencies in the caf20Δ mutant have relatively high averaged 5'-UTR secondary structure. There is no apparent wide-scale correlation of RNA-binding protein preferences with the increased 5'-UTR secondary structure, leading us to speculate that the secondary structure itself may play a role in differential partitioning of mRNAs between eIF4E/4E-BP repression and eIF4E/eIF4G translation initiation. Both Caf20p and Eap1p contain stretches of positive charge in regions of predicted disorder. Such regions are also present in eIF4G and have been reported to associate with mRNA binding. The pattern of these segments, around the canonical eIF4E-binding motif, varies between each 4E-BP and eIF4G. Analysis of gene ontology shows that yeast proteins containing predicted disordered segments, with positive charge runs, are enriched for nucleic acid binding. We propose that the 4E-BPs act, in part, as differential, flexible, polyelectrostatic scaffolds for mRNAs.  相似文献   

4.
The question of whether translation initiation factor eIF4E and the complete eIF4G polypeptide are required for initiation dependent on the IRES (internal ribosome entry site) of hepatitis A virus (HAV) has been examined using in vitro translation in standard and eIF4G-depleted rabbit reticulocyte lysates. In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases. In addition, the HAV IRES was inhibited by addition of eIF4E-binding protein 1, which binds tightly to eIF4E and sequesters it, thus preventing its association with eIF4G. The HAV IRES was also inhibited by addition of m(7)GpppG cap analogue, irrespective of whether the RNA tested was capped or not. Thus, initiation on the HAV IRES requires that eIF4E be associated with eIF4G and that the cap-binding pocket of eIF4E be empty and unoccupied. This suggests two alternative models: (i) initiation requires a direct interaction between an internal site in the IRES and eIF4E/4G, an interaction which involves the cap-binding pocket of eIF4E in addition to any direct eIF4G-RNA interactions; or (ii) it requires eIF4G in a particular conformation which can be attained only if eIF4E is bound to it, with the cap-binding pocket of the eIF4E unoccupied.  相似文献   

5.
The hepatitis A virus (HAV) internal ribosome entry segment (IRES) is unique among the picornavirus IRESs in that it is inactive in the presence of either the entero- and rhinovirus 2A or aphthovirus Lb proteinases. Since these proteinases both cleave eukaryotic initiation factor 4G (eIF4G) and HAV IRES activity could be rescued in vitro by addition of eIF4F to proteinase-treated extracts, it was concluded that the HAV IRES requires eIF4F containing intact eIF4G. Here, we show that the inability of the HAV IRES to function with cleaved eIF4G cannot be attributed to inefficient binding of the cleaved form of eIF4G by the HAV IRES. Indeed, the binding of both intact eIF4F and the C-terminal cleavage product of eIF4G to the HAV IRES was virtually indistinguishable from their binding to the encephalomyocarditis virus IRES, as assessed by UV cross-linking and filter retention assays. Rather, we show that HAV IRES activity requires, either directly or indirectly, components of the eIF4F complex which interact with the N-terminal fragment of eIF4G. Effectively, HAV IRES activity, but not that of the human rhinovirus IRES, was sensitive to the rotavirus nonstructural protein NSP3 [which displaces poly(A)-binding protein from the eIF4F complex], to recombinant eIF4E-binding protein (which prevents the association of the cap binding protein eIF4E with eIF4G), and to cap analogue.  相似文献   

6.
7.
Hypoxia promotes tumor evolution and metastasis, and hypoxia-inducible factor-1α (HIF-1α) is a key regulator of hypoxia-related cellular processes in cancer. The eIF4E translation initiation factors, eIF4E1, eIF4E2, and eIF4E3, are essential for translation initiation. However, whether and how HIF-1α affects cap-dependent translation through eIF4Es in hypoxic cancer cells has been unknown. Here, we report that HIF-1α promoted cap-dependent translation of selective mRNAs through up-regulation of eIF4E1 in hypoxic breast cancer cells. Hypoxia-promoted breast cancer tumorsphere growth was HIF-1α-dependent. We found that eIF4E1, not eIF4E2 or eIF4E3, is the dominant eIF4E family member in breast cancer cells under both normoxia and hypoxia conditions. eIF4E3 expression was largely sequestered in breast cancer cells at normoxia and hypoxia. Hypoxia up-regulated the expression of eIF4E1 and eIF4E2, but only eIF4E1 expression was HIF-1α-dependent. In hypoxic cancer cells, HIF-1α-up-regulated eIF4E1 enhanced cap-dependent translation of a subset of mRNAs encoding proteins important for breast cancer cell mammosphere growth. In searching for correlations, we discovered that human eIF4E1 promoter harbors multiple potential hypoxia response elements. Furthermore, using chromatin immunoprecipitation (ChIP) and luciferase and point mutation assays, we found that HIF-1α utilized hypoxia response elements in the human eIF4E1 proximal promoter region to activate eIF4E1 expression. Our study suggests that HIF-1α promotes cap-dependent translation of selective mRNAs through up-regulating eIF4E1, which contributes to tumorsphere growth of breast cancer cells at hypoxia. The data shown provide new insights into protein synthesis mechanisms in cancer cells at low oxygen levels.  相似文献   

8.
eIF4E, the cytoplasmatic cap-binding protein, is required for efficient cap-dependent translation. We have studied the influence of mutations that alter the activity and/or expression level of eIF4E on haploid and diploid cells in the yeast S. cerevisiae. Temperature-sensitive eIF4E mutants with reduced levels of expression and reduced cap-binding affinity clearly show a loss in haploid adhesion and diploid pseudohyphenation upon starvation for nitrogen. Some of these mutations affect the interaction of the cap-structure of mRNAs with the cap-binding groove of eIF4E. The observed reduction in adhesive and pseudohyphenating properties is less evident for an eIF4E mutant that shows reduced interaction with p20 (an eIF4E-binding protein) or for a p20-knockout mutant. Loss of adhesive and pseudohyphenating properties was not only observed for eIF4E mutants but also for knockout mutants of components of eIF4F such as eIF4B and eIF4G1. We conclude from these experiments that mutations that affect components of the eIF4F-complex loose properties such as adhesion and pseudohyphal differentiation, most likely due to less effective translation of required mRNAs for such processes.  相似文献   

9.
Integration of mouse mammary tumor virus (MMTV) at the common integration site Int6 occurs in the gene encoding eIF3e, the p48 subunit of translation initiation factor eIF3. Integration is at any of several introns of the Eif3e gene and causes the expression of truncated Eif3e mRNAs. Ectopic expression of the truncated eIF3e protein resulting from integration at intron 5 (3e5) induces malignant transformation, but by an unknown mechanism. Because eIF3e makes up at least part of the binding site for eIF4G, we examined the effects of 3e5 expression on protein synthesis. We developed an NIH3T3 cell line that contains a single copy of the 3e5 sequence at a predetermined genomic site. Co-immunoprecipitation indicated diminished binding of eIF3 to eIF4G, signifying a reduction in recruitment of the mRNA-unwinding machinery to the 43 S preinitiation complex. Cell growth and overall protein synthesis were decreased. Translation driven by the eIF4G-independent hepatitis C virus internal ribosome entry sequence (HCV IRES) in a bicistronic mRNA was increased relative to cap-dependent translation. Endogenous mRNAs encoding XIAP, c-Myc, CYR61, and Pim-1, which are translated in a cap-independent manner, were shifted to heavier polysomes whereas mRNAs encoding GAPDH, actin, L32, and L34, which are translated in a cap-dependent manner, were shifted to lighter polysomes. We propose that expression of 3e5 diminishes eIF4G interaction with eIF3 and causes abnormal gene expression at the translational level. The correlation between up-regulation of cap-independent translation and MMTV-induced tumorigenesis contrasts with the well established model for malignant transformation involving up-regulation of highly cap-dependent translation.  相似文献   

10.
The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ~10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation.  相似文献   

11.
12.
T Ohlmann  M Rau  V M Pain    S J Morley 《The EMBO journal》1996,15(6):1371-1382
The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the EIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (Nt) and C-terminal (Ct) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-dependent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4F. However, this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the Ct domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the Ct proteolytic cleavage product; (ii) when eIF4G is cleaved, the Ct domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule.  相似文献   

13.
Human and animal studies suggest that dietary soy isoflavones reduce cancer risk, ameliorate postmenopausal syndrome and decrease bone resorption in postmenopausal women. The capacity to form the metabolite equol from daidzein is suggested as an important modulator of response to isoflavones; this capacity depends on gut colonization with appropriate bacteria. We administered a dietary supplement containing high-dose purified soy isoflavones (genistein, 558 mg/day; daidzein, 296 mg/day; and glycitein, 44 mg/day) to 30 postmenopausal women for 84 days and collected peripheral lymphocytes at timed intervals. Using microarray analysis, we determined whether changes in gene expression associated with this treatment support existing hypotheses as to isoflavones' mechanisms of action. Expression of a large number of genes was altered by isoflavone treatment, including induction of genes associated with cyclic adenosine 3',5'-monophosphate (cAMP) signaling and cell differentiation and decreased expression of genes associated with cyclin-dependent kinase activity and cell division. We report that isoflavone treatment in subjects who have the capacity to produce equol differentially affects gene expression as compared with nonproducers, supporting the plausibility of the importance of equol production. In general, isoflavones had a stronger effect on some putative estrogen-responsive genes in equol producers than in nonproducers. Our study suggests that, in humans, isoflavone changes are related to increased cell differentiation, increased cAMP signaling and G-protein-coupled protein metabolism and increased steroid hormone receptor activity and have some estrogen agonist effects; equol-production status is likely to be an important modulator of responses to isoflavones.  相似文献   

14.
15.
Equol, a metabolite of the phytoestrogen daidzein, is present at significant levels in some humans who consume soy and in rodents fed soy-based diets. Equol is estrogenic in vitro, but there have been limited studies of its activity in vivo. We evaluated equol effects on reproductive and non-reproductive endpoints in mice. Ovariectomized age-matched (30-day-old) female C57BL/6 mice were fed phytoestrogen-free diets and given a racemic mixture of equol by daily injections (0, 4, 8, 12, or 20 mg [kg body weight](-1) day(-1)) or in the diet (0, 500, or 1,000 ppm) for 12 days. Mice were killed, and serum concentrations of total and aglycone equol were measured. Total serum equol concentrations ranged from 1.4 to 7.5 microM with increasing doses of injected equol, but uterine weight increased significantly only at 12 and 20 mg (kg body weight)(-1) day(-1). Dietary equol at 500 or 1,000 ppm produced total serum equol concentrations of 5.9 and 8.1 microM, respectively, comparable with those in rodents consuming certain high-soy chows; the proportion of equol present as the free aglycone was much lower with dietary administration than injections, which may be a factor in the greater biological effects induced by injections. Dietary equol did not significantly increase uterine weight. Increasing dietary and injected equol doses caused a dose-dependent increase in vaginal epithelial thickness. Uterine epithelial proliferation was increased by equol injections at 8-20 mg (kg body weight)(-1) day(-1) and 1,000 ppm dietary equol. Neither dietary nor injected equol decreased thymic or adipose weights. In conclusion, equol is a weak estrogen with modest effects on endpoints regulated by estrogen receptor alpha when present at serum levels seen in rodents fed soy-based diets, but quantities present in humans may not be sufficient to induce estrogenic effects, although additive effects of equol with other phytoestrogens may occur.  相似文献   

16.
17.
A key player in translation initiation is eIF4E, the mRNA 5′ cap-binding protein. 4E-Transporter (4E-T) is a recently characterized eIF4E-binding protein, which regulates specific mRNAs in several developmental model systems. Here, we first investigated the role of its enrichment in P-bodies and eIF4E-binding in translational regulation in mammalian cells. Identification of the conserved C-terminal sequences that target 4E-T to P-bodies was enabled by comparison of vertebrate proteins with homologues in Drosophila (Cup and CG32016) and Caenorhabditis elegans by sequence and cellular distribution. In tether function assays, 4E-T represses bound mRNA translation, in a manner independent of these localization sequences, or of endogenous P-bodies. Quantitative polymerase chain reaction and northern blot analysis verified that bound mRNA remained intact and polyadenylated. Ectopic 4E-T reduces translation globally in a manner dependent on eIF4E binding its consensus Y30X4Lϕ site. In contrast, tethered 4E-T continued to repress translation when eIF4E-binding was prevented by mutagenesis of YX4Lϕ, and modestly enhanced the decay of bound mRNA, compared with wild-type 4E-T, mediated by increased binding of CNOT1/7 deadenylase subunits. As depleting 4E-T from HeLa cells increased steady-state translation, in part due to relief of microRNA-mediated silencing, this work demonstrates the conserved yet unconventional mechanism of 4E-T silencing of particular subsets of mRNAs.  相似文献   

18.
Potyvirus RNA contains at the 5' end a covalently linked virus-encoded protein VPg, which is required for virus infectivity. This role has been attributed to VPg interaction with the eukaryotic translation initiation factor eIF4E, a cap-binding protein. We characterized the dissociation constants for the interaction of the potato virus Y VPg with different plant eIF4Es and its isoforms and mapped the eIF(iso)4E attachment region on VPg. VPg/eIF4E interaction results in the inhibition of cell-free protein synthesis, and we show that it stems from the liberation of the cap moiety from the complex with eIF4E. Since VPg does not attach the cap, it appears that VPg induces changes in the eIF4E structure, diminishing its affinity to the cap. We show here that the initiation complex scaffold protein eIF(iso)4G increases VPg interaction with eIF(iso)4E. These data together suggest similar cap and VPg interactions with eIF4E and characterize VPg as a novel eIF4E-binding protein, which inhibits host protein synthesis at a very early stage of the initiation complex formation through the inhibition of cap attachment to the initiation factor eIF4E.  相似文献   

19.
The aim of our study was to evaluate the effects of dietary equol, metabolite of a phytoestrogen daidzein, on the secretion of prolactin (PRL) and lutenizing hormone (LH), as well as the expression of estrogen receptors (ERalpha, ERbeta and truncated estrogen receptor-1 (TERP-1) in the pituitary gland of ovariectomized (ovx) female Sprague-Dawley rats. Two doses of equol (50 mg/kg of chow and 400 mg/kg of chow) were used and the results were compared with the effects of estradiol 3-benzoate (E2B), also given at two doses (4.3 mg/kg of chow and 17.3 mg/kg of chow). Treatment period was 3 months. Dietary equol administration at the high dose increased significantly serum PRL levels. This effect was also observed in the E2B group but this difference did not reach statistical significance. Surprisingly, high dose dietary equol treatment also significantly increased serum LH levels, which was in contrast to E2B treatment where serum LH levels were significantly decreased at both doses. Serum LH levels in the equol low group were unaffected. Equol treatment had no effects on pituitary ERalpha or ERbeta gene expression. In contrast, high dose E2B treatment increased significantly pituitary ERalpha mRNA levels but decreased those of ERbeta. Both doses of E2B also increased significantly pituitary TERP-1 mRNA levels. This effect was also observed in the equol high group but at a much smaller magnitude. In conclusion, high dose dietary equol administration to ovx rats exerts estrogenic like effects on the lactotropes and anti-estrogenic on the gonadotropes.  相似文献   

20.
Daidzein and genistein are the main aglycones of soy isoflavonoid, and have many useful activities in vitro and in vivo. However, equol, a metabolite of daidzein in vivo, has attracted attention due to its stronger activity than that of the naturally occurring isoflavonoids. We subjected the soy isoflavonoids, including the naturally occurring (S)-equol, to mouse adipocytes, and compared the inhibitory activity on the leptin secretion. Equol, daidzein and genistein inhibited the leptin secretion, whereas O-desmethylangolensin had a lower activity. The inhibitory activity of the isoflavones was not affected by the addition of an iNOS inhibitor and an estrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号