首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P2 production at that location are uncharacterized, functions of PtdIns(4,5)P2 in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5-kinases) of Arabidopsis subfamily B were identified (PIP5K4 and PIP5K5), and their recombinant proteins were characterized as being PI4P 5-kinases. Pollen of T-DNA insertion lines deficient in both PIP5K4 and PIP5K5 exhibited reduced pollen germination and defects in pollen tube elongation. Fluorescence-tagged PIP5K4 and PIP5K5 localized to an apical plasma membrane microdomain in Arabidopsis and tobacco (Nicotiana tabacum) pollen tubes, and overexpression of either PIP5K4 or PIP5K5 triggered multiple tip branching events. Further studies using the tobacco system revealed that overexpression caused massive apical pectin deposition accompanied by plasma membrane invaginations. By contrast, callose deposition and cytoskeletal structures were unaltered in the overexpressors. Morphological effects depended on PtdIns(4,5)P2 production, as an inactive enzyme variant did not produce any effects. The data indicate that excessive PtdIns(4,5)P2 production by type B PI4P 5-kinases disturbs the balance of membrane trafficking and apical pectin deposition. Polar tip growth of pollen tubes may thus be modulated by PtdIns(4,5)P2 via regulatory effects on membrane trafficking and/or apical pectin deposition.  相似文献   

2.
Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P2) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P2 because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P2 was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity.  相似文献   

3.
Pollen tube growth requires coordination of cytoskeletal dynamics and apical secretion. The regulatory phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is enriched in the subapical plasma membrane of pollen tubes of Arabidopsis thaliana and tobacco (Nicotiana tabacum) and can influence both actin dynamics and secretion. How alternative PtdIns(4,5)P2 effects are specified is unclear. In tobacco pollen tubes, spinning disc microscopy (SD) reveals dual distribution of a fluorescent PtdIns(4,5)P2-reporter in dynamic plasma membrane nanodomains vs. apparent diffuse membrane labeling, consistent with spatially distinct coexisting pools of PtdIns(4,5)P2. Several PI4P 5-kinases (PIP5Ks) can generate PtdIns(4,5)P2 in pollen tubes. Despite localizing to one membrane region, the PIP5Ks AtPIP5K2-EYFP and NtPIP5K6-EYFP display distinctive overexpression effects on cell morphologies, respectively related to altered actin dynamics or membrane trafficking. When analyzed by SD, AtPIP5K2-EYFP associated with nanodomains, whereas NtPIP5K6-EYFP localized diffusely. Chimeric AtPIP5K2-EYFP and NtPIP5K6-EYFP variants with reciprocally swapped membrane-associating domains evoked reciprocally shifted effects on cell morphology upon overexpression. Overall, active PI4P 5-kinase variants stabilized actin when targeted to nanodomains, suggesting a role of nanodomain-associated PtdIns(4,5)P2 in actin regulation. This notion is further supported by interaction and proximity of nanodomain-associated AtPIP5K2 with the Rho-GTPase NtRac5, and by its functional interplay with elements of Rho of plants signaling. Plasma membrane nano-organization may thus aid the specification of PtdIns(4,5)P2 functions to coordinate cytoskeletal dynamics and secretion.

The apical plasma membrane of pollen tubes contains nanodomains where the regulatory phospholipid PtdIns(4,5)P2 exerts a stabilizing effect on the actin cytoskeleton.  相似文献   

4.
Type III phosphatidylinositol (PtdIns) 4-kinases (PI4Ks) have been previously shown to support plasma membrane phosphoinositide synthesis during phospholipase C activation and Ca2+ signaling. Here, we use biochemical and imaging tools to monitor phosphoinositide changes in the plasma membrane in combination with pharmacological and genetic approaches to determine which of the type III PI4Ks (α or β) is responsible for supplying phosphoinositides during agonist-induced Ca2+ signaling. Using inhibitors that discriminate between the α- and β-isoforms of type III PI4Ks, PI4KIIIα was found indispensable for the production of phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], and Ca2+ signaling in angiotensin II (AngII)-stimulated cells. Down-regulation of either the type II or type III PI4K enzymes by small interfering RNA (siRNA) had small but significant effects on basal PtdIns4P and PtdIns(4,5)P2 levels in 32P-labeled cells, but only PI4KIIIα down-regulation caused a slight impairment of PtdIns4P and PtdIns(4,5)P2 resynthesis in AngII-stimulated cells. None of the PI4K siRNA treatments had a measurable effect on AngII-induced Ca2+ signaling. These results indicate that a small fraction of the cellular PI4K activity is sufficient to maintain plasma membrane phosphoinositide pools, and they demonstrate the value of the pharmacological approach in revealing the pivotal role of PI4KIIIα enzyme in maintaining plasma membrane phosphoinositides.  相似文献   

5.
The functions of the minor phospholipid phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] during vegetative plant growth remain obscure. Here, we targeted two related phosphatidylinositol 4-phosphate 5-kinases (PI4P 5-kinases) PIP5K1 and PIP5K2, which are expressed ubiquitously in Arabidopsis thaliana. A pip5k1 pip5k2 double mutant with reduced PtdIns(4,5)P2 levels showed dwarf stature and phenotypes suggesting defects in auxin distribution. The roots of the pip5k1 pip5k2 double mutant had normal auxin levels but reduced auxin transport and altered distribution. Fluorescence-tagged auxin efflux carriers PIN-FORMED (PIN1)–green fluorescent protein (GFP) and PIN2-GFP displayed abnormal, partially apolar distribution. Furthermore, fewer brefeldin A–induced endosomal bodies decorated by PIN1-GFP or PIN2-GFP formed in pip5k1 pip5k2 mutants. Inducible overexpressor lines for PIP5K1 or PIP5K2 also exhibited phenotypes indicating misregulation of auxin-dependent processes, and immunolocalization showed reduced membrane association of PIN1 and PIN2. PIN cycling and polarization require clathrin-mediated endocytosis and labeled clathrin light chain also displayed altered localization patterns in the pip5k1 pip5k2 double mutant, consistent with a role for PtdIns(4,5)P2 in the regulation of clathrin-mediated endocytosis. Further biochemical tests on subcellular fractions enriched for clathrin-coated vesicles (CCVs) indicated that pip5k1 and pip5k2 mutants have reduced CCV-associated PI4P 5-kinase activity. Together, the data indicate an important role for PtdIns(4,5)P2 in the control of clathrin dynamics and in auxin distribution in Arabidopsis.  相似文献   

6.
Inositol‐containing phospholipids (phosphoinositides, PIs) control numerous cellular processes in eukaryotic cells. For plants, a key involvement of PIs has been demonstrated in the regulation of membrane trafficking, cytoskeletal dynamics and in processes mediating the adaptation to changing environmental conditions. Phosphatidylinositol‐4,5‐bisphosphate (PtdIns(4,5)P2) mediates its cellular functions via binding to various alternative target proteins. Such downstream targets of PtdIns(4,5)P2 are characterised by the possession of specific lipid‐binding domains, and binding of the PtdIns(4,5)P2 ligand exerts effects on their activity or localisation. The large number of potential alternative binding partners – and associated cellular processes – raises the question how alternative or even contrapuntal effects of PtdIns(4,5)P2 are orchestrated to enable cellular function. This article aims to provide an overview of recent insights and new views on how distinct functional pools of PtdIns(4,5)P2 are generated and maintained. The emerging picture suggests that PtdIns(4,5)P2 species containing different fatty acids influence the lateral mobility of the lipids in the membrane, possibly enabling specific interactions of PtdIns(4,5)P2 pools with certain downstream targets. PtdIns(4,5)P2 pools with certain functions might also be defined by protein–protein interactions of PI4P 5‐kinases, which pass PtdIns(4,5)P2 only to certain downstream partners. Individually or in combination, PtdIns(4,5)P2 species and specific protein–protein interactions of PI4P 5‐kinases might contribute to the channelling of PtdIns(4,5)P2 signals towards specific functional effects. The dynamic nature of PI‐dependent signalling complexes with specific functions is an added challenge for future studies of plant PI signalling.  相似文献   

7.
Phagocytosis requires phosphoinositides (PIs) as both signaling molecules and localization cues. How PIs coordinate to control phagosomal sealing and the accompanying switch of organelle identity is unclear. In this study, we followed dynamic changes in PIs during apoptotic cell clearance in Caenorhabditis elegans. We found that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol-3-phosphate (PtdIns3P), which accumulate transiently on unsealed and fully sealed phagosomes, respectively, are both involved in phagosome closure. We identified PtdIns3P phosphatase MTM-1 as an effector of PtdIns(4,5)P2 to promote phagosomal sealing. MTM-1 coordinates with the class II PI3 kinase PIKI-1 to control PtdIns3P levels on unsealed phagosomes. The SNX9 family protein LST-4 is required for sealing, and its association with unsealed phagosomes is regulated by PtdIns(4,5)P2, PIKI-1, and MTM-1. Loss of LST-4 or its retention on phagosomes disrupts sealing and suppresses PtdIns3P accumulation, indicating close coupling of the two events. Our findings support a coincidence detection mechanism by which phagosomal sealing is regulated and coupled with conversion from PtdIns(4,5)P2 enrichment on unsealed phagosomes to PtdIns3P enrichment on fully sealed phagosomes.  相似文献   

8.
Guard cells sense various environmental and internal stimuli and, in response, modulate the stomatal aperture to a size optimal for growth and adaptation. Among the many factors involved in the fine regulation of stomata, we have focused our studies on the role of phosphoinositides. Our recent study published in the Plant Journal (52:803–16) provides evidence for an important role for phosphatidylinositol 4,5-bis-phosphate (PtdIns(4,5)P2) in inducing stomatal opening. Light induces translocation of a PtdIns(4,5)P2-binding protein from the cytosol to the plasma membrane and treatments that increase the intracellular PtdIns(4,5)P2 level induce stomatal opening in the absence of light irradiation. Inhibition of anion channel activity, a negative regulator for stomatal opening, was suggested as a mechanism of PtdIns(4,5)P2-induced stomatal opening. We also reported that phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 4-phosphate (PtdIns(4)P) regulate actin dynamics in guard cells. The effects of the phosphoinositides were specific, and were not induced by other lipids with similar structures. The roles of different interacting partners are likely to be important for these lipids to produce specific changes in guard cell activity.Key words: PtdIns(4,5)P2; PtdIns(4)P; Ins(1,4,5)P3; anion channel; PIP kinase; phospholipase C; stomatal opening; guard cells  相似文献   

9.
For decades, phosphatidylinositol 4-phosphate (PtdIns4P) was considered primarily as a precursor in the synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2). More recently, specific functions for PtdIns4P itself have been identified, particularly in the regulation of intracellular membrane trafficking. PI4K2A/PI4KIIα (phosphatidylinositol 4-kinase type 2 α), one of the 4 enzymes that catalyze PtdIns4P production in mammalian cells, promotes vesicle formation from the trans-Golgi network (TGN) and endosomes. We recently identified a novel function for PI4K2A-derived PtdIns4P, as a facilitator of autophagosome-lysosome (A-L) fusion. We further showed that that this function requires the presence of the autophagic adaptor protein GABARAP (GABA[A] receptor-associated protein), which binds to PI4K2A and recruits it to autophagosomes. The mechanism whereby GABARAP-PI4K2A-PtdIns4P promotes A-L fusion remains to be defined. Based on other examples of phosphoinositide involvement in membrane trafficking, we speculate that it acts by recruiting elements of the membrane docking and fusion machinery.  相似文献   

10.
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking.  相似文献   

11.
The regulation of pollen tube growth by the phospholipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2) ) is not well understood. The Arabidopsis genome encodes two type A phosphatidylinositol-4-phosphate (PI4P) 5-kinases, PIP5K10 and PIP5K11, which are exclusively expressed in pollen and produce PtdIns(4,5)P(2) in vitro. Fluorescence-tagged PIP5K10 and PIP5K11 localized to lateral subapical plasma membrane microdomains in tobacco pollen tubes in a pattern closely resembling the distribution of PtdIns(4,5)P(2,) with the exception of notably weaker association at the extreme apex. Overexpression of PIP5K10 or PIP5K11 in tobacco pollen tubes resulted in severe tip swelling and altered actin fine structure similar to that reported for overexpression of tobacco Nt-Rac5, a monomeric GTPase known to regulate the actin cytoskeleton. Increased sensitivity of Arabidopsis pip5k10 pip5k11 double mutant pollen tubes to Latrunculin B (LatB) further supports a role for type A PI4P 5-kinases in controlling the actin cytoskeleton. Despite the disruption of both its type A PI4P 5-kinases, the pip5k10 pip5k11 double mutant was fertile, indicating that one of the remaining type B PI4P 5-kinase isoforms might be functionally redundant with PIP5K10 and PIP5K11. Antagonistic effects of PIP5K11 and the Nt-Rac5-specific guanine nucleotide dissociation inhibitor, Nt-RhoGDI2, on tip swelling observed in coexpression-titration experiments indicate a link between PtdIns(4,5)P(2) and Rac-signaling in pollen tubes. The data suggest that type A PI4P 5-kinases influence the actin cytoskeleton in pollen tubes in part by counteracting Nt-RhoGDI2, possibly contributing to the control of the pool of plasma membrane-associated Nt-Rac5.  相似文献   

12.
The function of Neurospora crassa calcineurin was investigated in N. crassa strains transformed with a construct that provides for the inducible expression of antisense RNA for the catalytic subunit of calcineurin (cna-1). Induction of antisense RNA expression was associated with reduced levels of cna-1 mRNA and of immunodetectable CNA1 protein and decreased calcineurin enzyme activity, indicating that a conditional reduction of the target function had been achieved in antisense transformants with multiple construct integrations. Induction conditions caused growth arrest which indicated that the cna-1 gene is essential for growth of N. crassa. Growth arrest was preceded by an increase in hyphal branching, changes in hyphal morphology and concomitant loss of the distinctive tip-high Ca2+ gradient typical for growing wild-type hyphae. This demonstrates a novel and specific role for calcineurin in the precise regulation of apical growth, a common form of cellular proliferation. In vitro inhibition of N. crassa calcineurin by the complex of cyclosporin A (CsA) and cyclophilin20, and increased sensitivity of the induced transformants to the calcineurin-specific drugs CsA and FK506 imply that the drugs act in N. crassa, as in T-cells and Saccharomyces cerevisiae, by inactivating calcineurin. The finding that exposure of growing wild-type mycelium to these drugs leads to a phenotype very similar to that of the cna-1 antisense mutants is consistent with this idea.  相似文献   

13.
Data are presented on a variety of intracellular structures of the vegetative hyphae of the filamentous fungus Neurospora crassa and the involvement of these structures in the tip growth of the hyphae. Current ideas on the molecular and genetic mechanisms of tip growth and regulation of this process are considered. On the basis of comparison of data on behaviors of mitochondria and microtubules and data on the electrical heterogeneity of the hyphal apex, a hypothesis is proposed about a possible supervisory role of the longitudinal electric field in the structural and functional organization of growing tips of the N. crassa hyphae.  相似文献   

14.
15.
The four mammalian phosphatidylinositol 4-kinases, together with the PI(4,5)P2 depleting 5-phosphatases of the oculocerebrorenal syndrome of Lowe and synaptojanin families, modulate neuronal pools of PI4P lipid and regulate intracellular membrane trafficking in the endocytic and secretory pathways. Dysfunctions in these enzymes have been associated with a broad spectrum of disorders including schizophrenia, bipolar disorder, Lowe syndrome, age-related neurodegeneration, Alzheimer’s disease and Down syndrome. Recent work has shown that reduced expression of individual phosphatidylinositol 4-kinase isozymes is associated with impaired survival of specific neuronal populations within the CNS. Furthermore, alterations to the concentrations of different phosphoinositide lipid species in the brain and, in particular, the ratio of PI4P to PI(4,5)P2 can have deleterious effects on clathrin-dependent membrane trafficking both in the Golgi–endosomal pathway and at the plasma membrane. In this article, we focus on the cell biology, biochemistry and neuronal functions of the phosphatidylinositol 4-kinases and their emerging roles in psychiatric and neurological pathologies.  相似文献   

16.
17.
Phosphoinositide (PI) 3-kinases have been characterized as enzymes involved in receptor signal transduction in mammalian cells and in a complex which mediates protein trafficking in yeast. PI 3-kinases linked to receptors with intrinsic or associated tyrosine kinase activity are heterodimeric proteins, consisting of p85 adaptor and p110 catalytic subunits, which can generate the 3-phosphorylated forms of phosphatidylinositol (PtdIns), PtdIns4P and PtdIns(4,5)P2 as potential second messengers. Yeast Vps34p kinase, however, has a substrate specificity restricted to PtdIns and is a PtdIns 3-kinase. Here the molecular characterization of a new human PtdIns 3-kinase with extensive sequence homology to Vps34p is described. PtdIns 3-kinase does not associate with p85 and phosphorylates PtdIns, but not PtdIns4P or PtdIns(4,5)P2. In vivo PtdIns 3-kinase is in a complex with a cellular protein of 150 kDa, as detected by immunoprecipitation from human cells. Protein sequence analysis and cDNA cloning show that this 150 kDa protein is highly homologous to Vps15p, a 160 kDa protein serine/threonine kinase associated with yeast Vps34p. These results suggest that the major components of the yeast Vps intracellular trafficking complex are conserved in humans.  相似文献   

18.
The spatial activation of phosphoinositide 3-kinase (PI3-kinase) signaling at the axon growth cone generates phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3), which localizes and facilitates Akt activation and stimulates GSK-3β inactivation, promoting microtubule polymerization and axon elongation. However, the molecular mechanisms that govern the spatial down-regulation of PtdIns(3,4,5)P3 signaling at the growth cone remain undetermined. The inositol polyphosphate 5-phosphatases (5-phosphatase) hydrolyze the 5-position phosphate from phosphatidylinositol 4,5 bisphosphate (PtdIns(4,5)P2) and/or PtdIns(3,4,5)P3. We demonstrate here that PIPP, an uncharacterized 5-phosphatase, hydrolyzes PtdIns(3,4,5)P3 forming PtdIns(3,4)P2, decreasing Ser473-Akt phosphorylation. PIPP is expressed in PC12 cells, localizing to the plasma membrane of undifferentiated cells and the neurite shaft and growth cone of NGF-differentiated neurites. Overexpression of wild-type, but not catalytically inactive PIPP, in PC12 cells inhibited neurite elongation. Targeted depletion of PIPP using RNA interference (RNAi) resulted in enhanced neurite differentiation, associated with neurite hyperelongation. Inhibition of PI3-kinase activity prevented neurite hyperelongation in PIPP-deficient cells. PIPP targeted-depletion resulted in increased phospho-Ser473-Akt and phospho-Ser9-GSK-3β, specifically at the neurite growth cone, and accumulation of PtdIns(3,4,5)P3 at this site, associated with enhanced microtubule polymerization in the neurite shaft. PIPP therefore inhibits PI3-kinase-dependent neurite elongation in PC12 cells, via regulation of the spatial distribution of phospho-Ser473-Akt and phospho-Ser9-GSK-3β signaling.  相似文献   

19.
Within the plant kingdom the stomatal guard cell is presented as a model system of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]-mediated signal transduction. Despite this it is only recently that the phosphoinositide components of animal signal transduction pathways have been identified in stomatal guard cells. Interestingly, stomatal guard cells contain both 3- and 4-phosphorylated phosphatidylinositols though their relative contributions to signalling remain undefined. An appraisal of the routes of synthesis and rates of turnover of these phosphatidylinositols would appear timely as the in vivo biosynthesis of these components is a much neglected facet of the phosphoinositide-mediated signalling paradigm as purported to apply to plants. A non-equilibrium [32P]Pi labelling strategy and enzymic and chemical dissection of labelled phosphatidylinositols have been used to address not only the route of synthesis but also the rates of turnover of phosphatidylinositols in stomatal guard cells of Commelina communis L. The specific activity of the ATP pool of isolated guard cells was found to increase over a 4 h period when labelled from [32P]Pi. In separate experiments, isolated guard cells were labelled over a 40–240 min period, their lipids extracted, deacylated and resolved by HPLC. Glycerophosphoinositol phosphate (GroPInsP) and glycerophosphoinositol bisphosphate (GroPInsP2) peaks were desalted and enzymically cleaved with alkaline phosphatase and human erythrocyte ghosts, respectively. The monoester phosphate in phosphatidylinositol 4-monophosphate (PtdIns4P) accounted for 90–97% of the [32P]Pi label while the 4- and 5-monoester phosphates of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] accounted for typically 39% and 61% respectively. Therefore, the evidence is consistent with synthesis of PtdIns(4,5)P2 by successive 4- and 5-phosphorylation of phosphatidylinositol (PtdIns). This study therefore represents the first report of the pathway of the synthesis of 4- and 5-phosphorylated phosphatidylinositols in a single defined hormone-responsive plant cell type. The monoester phosphate in phosphatidylinositol 3-monophosphate (PtdIns3P) accounted for 83–95% of the 32P label. It was not possible, however, to determine the route of synthesis of phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2] owing to the rapid attainment of equilibrium between the 3- and 4-monoester phosphates of PtdIns(3,4)P2, each containing approximately 50% of the label at just 40 min of labelling. Turnover of PtdIns3P was quicker than that of PtdIns4P. Similarly, turnover of PtdIns(3,4)P2 was quicker than that of PtdIns(4,5)P2, and in mass terms PtdIns(3,4)P2 appeared to predominate over PtdIns(4,5)P2. By analogy with animal systems, in which signalling molecules such as PtdIns(4,5)P2 show considerable basal turnover, the evidence presented is consistent with signalling roles for PtdIns3P and PtdIns(3,4)P2 in addition to those previously indicated for PtdIns(4,5)P2 in stomatal guard cells.  相似文献   

20.
The Saccharomyces cerevisiae FAB1 gene encodes a 257-kD protein that contains a cysteine-rich RING-FYVE domain at its NH2-terminus and a kinase domain at its COOH terminus. Based on its sequence, Fab1p was initially proposed to function as a phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (Yamamoto et al., 1995). Additional sequence analysis of the Fab1p kinase domain, reveals that Fab1p defines a subfamily of putative PtdInsP kinases that is distinct from the kinases that synthesize PtdIns(4,5)P2. Consistent with this, we find that unlike wild-type cells, fab1Δ, fab1tsf, and fab1 kinase domain point mutants lack detectable levels of PtdIns(3,5)P2, a phosphoinositide recently identified both in yeast and mammalian cells. PtdIns(4,5)P2 synthesis, on the other hand, is only moderately affected even in fab1Δ mutants. The presence of PtdIns(3)P in fab1 mutants, combined with previous data, indicate that PtdIns(3,5)P2 synthesis is a two step process, requiring the production of PtdIns(3)P by the Vps34p PtdIns 3-kinase and the subsequent Fab1p- dependent phosphorylation of PtdIns(3)P yielding PtdIns(3,5)P2. Although Vps34p-mediated synthesis of PtdIns(3)P is required for the proper sorting of hydrolases from the Golgi to the vacuole, the production of PtdIns(3,5)P2 by Fab1p does not directly affect Golgi to vacuole trafficking, suggesting that PtdIns(3,5)P2 has a distinct function. The major phenotypes resulting from Fab1p kinase inactivation include temperature-sensitive growth, vacuolar acidification defects, and dramatic increases in vacuolar size. Based on our studies, we hypothesize that whereas Vps34p is essential for anterograde trafficking of membrane and protein cargoes to the vacuole, Fab1p may play an important compensatory role in the recycling/turnover of membranes deposited at the vacuole. Interestingly, deletion of VAC7 also results in an enlarged vacuole morphology and has no detectable PtdIns(3,5)P2, suggesting that Vac7p functions as an upstream regulator, perhaps in a complex with Fab1p. We propose that Fab1p and Vac7p are components of a signal transduction pathway which functions to regulate the efflux or turnover of vacuolar membranes through the regulated production of PtdIns(3,5)P2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号