首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have demonstrated that Artemin (ARTN) functions as a cancer stem cell (CSC) and metastatic factor in mammary carcinoma. Herein, we report that ARTN mediates acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells. Ligands that increase HER2 activity increased ARTN expression in HER2-positive mammary carcinoma cells, whereas trastuzumab inhibited ARTN expression. Forced expression of ARTN decreased the sensitivity of HER2-positive mammary carcinoma cells to trastuzumab both in vitro and in vivo. Conversely, siRNA-mediated depletion of ARTN enhanced trastuzumab efficacy. Cells with acquired resistance to trastuzumab exhibited increased ARTN expression, the depletion of which restored trastuzumab sensitivity. Trastuzumab resistance produced an increased CSC population concomitant with enhanced mammospheric growth. ARTN mediated the enhancement of the CSC population by increased BCL-2 expression, and the CSC population in trastuzumab-resistant cells was abrogated upon inhibition of BCL-2. Hence, we conclude that ARTN is one mediator of acquired resistance to trastuzumab in HER2-positive mammary carcinoma cells.  相似文献   

2.
The neurotrophic factor ARTEMIN (ARTN) has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC). Human microvascular endothelial cells (HMEC-1) do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman’s rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34) compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody) partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis.  相似文献   

3.
4.
Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Ex-pression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound heal-ing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.  相似文献   

5.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

6.
Cancer stem cells (CSCs) are thought to be responsible for tumor initiation and recurrence after chemotherapy. Targeting CSCs and non-CSCs with specific compounds may be an effective approach to reduce lung cancer growth and metastasis. The aim of this study was to investigate the effect of salinomycin, a selective inhibitor of CSCs, with or without combination with paclitaxel, in a metastatic model. To evaluate the effect of these drugs in metastasis and tumor microenvironment we took advantage of the immunocompetent and highly metastatic LLC mouse model. Aldefluor assays were used to analyze the ALDH+/− populations in murine LLC and human H460 and H1299 lung cancer cells. Salinomycin reduced the proportion of ALDH+ CSCs in LLC cells, whereas paclitaxel increased such population. The same effect was observed for the H460 and H1299 cell lines. Salinomycin reduced the tumorsphere formation capacity of LLC by more than 7-fold, but paclitaxel showed no effect. In in vivo experiments, paclitaxel reduced primary tumor volume but increased the number of metastatic nodules (p<0.05), whereas salinomycin had no effect on primary tumors but reduced lung metastasis (p<0.05). Combination of both drugs did not improve the effect of single therapies. ALDH1A1, SOX2, CXCR4 and SDF-1 mRNA levels were higher in metastatic lesions than in primary tumors, and were significantly elevated in both locations by paclitaxel treatment. On the contrary, such levels were reduced (or in some cases did not change) when mice were administered with salinomycin. The number of F4/80+ and CD11b+ cells was also reduced upon administration of both drugs, but particularly in metastasis. These results show that salinomycin targets ALDH+ lung CSCs, which has important therapeutic effects in vivo by reducing metastatic lesions. In contrast, paclitaxel (although reducing primary tumor growth) promotes the selection of ALDH+ cells that likely modify the lung microenvironment to foster metastasis.  相似文献   

7.

Background

Artemin (ARTN) is a neurotrophic factor belonging to the glial cell-derived neurotrophic factor family of ligands. To develop potential therapy targeting ARTN, we studied the roles of miR-223 in the migration and invasion of human esophageal carcinoma.

Methods

ARTN expression levels were detected in esophageal carcinoma cell lines KYSE-150, KYSE-510, EC-9706, TE13, esophageal cancer tissues and paired non-cancerous tissues by Western blot. Artemin siRNA expression vectors were constructed to knockdown of artemin expression mitigated migration and invasiveness in KYSE150 cells. Monolayer wound healing assay and Transwell invasion assay were applied to observe cancer cell migration and invasion. The relative levels of expression were quantified by real-time quantitative PCR.

Results

ARTN expression levels were higher in esophageal carcinoma tissue than in the adjacent tissue and was differentially expressed in various esophageal carcinoma cell lines. ARTN mRNA contains a binding site for miR-223 in the 3'UTR. Co-transfection of a mir-223 expression vector with pMIR-ARTN led to the reduced activity of luciferase in a dual-luciferase reporter gene assay, suggesting that ARTN is a target gene of miR-223. Overexpression of miR-223 decreased expression of ARTN in KYSE150 cells while silencing miR-223 increased expression of ARTN in EC9706 cells. Furthermore, overexpression of miR-223 in KYSE150 cells decreased cell migration and invasion. Silencing of miR-223 in EC9706 cells increased cell migration and invasiveness.

Conclusions

These results reveal that ARTN, a known tumor metastasis-related gene, is a direct target of miR-223 and that miR-223 may have a tumor suppressor function in esophageal carcinoma and could be used in anticancer therapies.  相似文献   

8.
The 5-fluorouracil (5FU)-based adjuvant chemotherapy improves the survival of patients with colorectal cancer, however the main obstacle affecting its effectiveness is a drug resistance. Our study aimed to investigate the impact of TWIST1 silencing on the sensitivity of cancer cells to 5FU. The suppression of TWIST1 expression in human colon cancer HT29 and HCT116 cell lines was achieved by transduction with lentiviral vector carrying the TWIST1 silencing sequence (pLL3.7-shTWIST1). The suppression of TWIST1 expression induced changes in the expression pattern of epithelial to mesenchymal transition markers, reduced the cells proliferation rate, increased their sensitivity to serum withdrawn, and increased the cytotoxic effect of 5FU. However, significantly higher 5FU cytotoxicity was observed in HT29 cell cultures. Cells with silenced TWIST1 displayed altered expression of enzymes metabolizing 5FU. The expression level of dihydropyrimidine dehydrogenase, and thymidylate synthase decreased significantly in HT29 shTWIST1 cells, but not in HCT116 shTWIST1 cells. On the other hand, significant increases in the expression levels of thymidine phosphorylase, and uridine phosphorylase 1 were seen in both cell lines with suppressed expression of TWIST1. The changes in enzymes expression were mirrored by enzymatic activities. In conclusion, our observations point to TWIST1 as a target protein to enhance the sensitivity of colorectal cancer cells to 5FU.  相似文献   

9.
Low-folate (LF) nutritional status is associated with increased risks of lung cancer. It has unexplored effects on lung cancer malignancy, a cancer stem cell (CSC) disease. We hypothesized that LF may reprogram CSC-like potential and bioenergetics metabolism to increase metastasis potential of lung cancers. Cultivation of human non-small-cell lung cancer cells (H23) in an LF medium enhanced CSC-like properties signified by increased expressions of the CSC surface marker CD44 and pluripotency markers Sox2, Oct4 and ALDH1A1, and promoted self-renewal ability of anchorage-independent oncospheroid formation. The CSC-like phenotype of LF-treated H23 cells coupled with the metabolic reprogramming to aerobic glycolysis evident by elevated lactate release and medium acidification suppressed expressions of pyruvate dehydrogenase E1-α, and elevated redox status of the NADH/NAD+ and NADPH/NADP+ ratios. The LF-induced metabostemness phenotype of H23 cells was modified by DNA methylation inhibitor 5-AdC and histone acetylation inhibitor EX. Treatment of H23 cells with mTOR siRNA or the mTOR inhibitor rapamycin abrogated LF-activated Akt-mTOR-Hif1-Foxo signaling and stemness-associated sonic hedgehog pathway, reversed Warburg metabolic switch and diminished invasion of H23 cells. Intrapleural injection of LF-induced lung oncospheres into the LF recipient mice, but not the control recipient mice, caused metastasis xenograft lung tumors. The in vitro and in vivo data corroboratively demonstrate that LF stress reprograms metabostemness signatures through activated mTOR signaling pathway to promote metastasis tumorigenicity of lung cancers.  相似文献   

10.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

11.

Background

Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC.

Methods and Findings

We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases.

Conclusions

In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.  相似文献   

12.
Aldehyde dehydrogenase 1 (ALDH1) has been considered to be a marker for cancer stem cells. However, the role of ALDH1 in head and neck squamous cell carcinoma (HNSCC) has yet to be determined. In this study, we isolated ALDH1-positive cells from HNSCC patients and showed that these HNSCC-ALDH1+ cells displayed radioresistance and represented a reservoir for generating tumors. Based on microarray findings, the results of Western blotting and immunofluorescent assays further confirmed that ALDH1+-lineage cells showed evidence of having epithelial-mesenchymal transition (EMT) shifting and endogenously co-expressed Snail. Furthermore, the knockdown of Snail expression significantly decreased the expression of ALDH1, inhibited cancer stem-like properties, and blocked the tumorigenic abilities of CD44+CD24ALDH1+ cells. Finally, in a xenotransplanted tumorigenicity study, we confirmed that the treatment effect of chemoradiotherapy for ALDH1+ could be improved by Snail siRNA. In summary, it is likely that ALDH1 is a specific marker for the cancer stem-like cells of HNSCC.  相似文献   

13.
14.
15.
16.
17.
Background: 5-Fluorouracil (5Fu) chemotherapy is the first treatment of choice for advanced gastric cancer (GC), but its effectiveness is limited by drug resistance. Emerging evidence suggests that the existence of cancer stem cells (CSCs) contributes to chemoresistance. The aim of the present study was to determine whether 5Fu chemotherapy generates residual cells with CSC-like properties in GC. Methods: Human GC cell lines, SGC7901 and AGS, were exposed to increasing 5Fu concentrations. The residual cells were assessed for both chemosensitivity and CSC-like properties. B lymphoma Mo-MLV insertion region 1 (BMI1), a putative CSC protein, was analyzed by immunohistochemical staining and subjected to pairwise comparison in GC tissues treated with or without neoadjuvant 5Fu-based chemotherapy. The correlation between BMI1 expression and recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy was then examined. Results: The residual cells exhibited 5Fu chemoresistance. These 5Fu-resistant cells displayed some CSC features, such as a high percentage of quiescent cells, increased self-renewal ability and tumorigenicity. The 5Fu-resistant cells were also enriched with cells expressing cluster of differentiation (CD)133+, CD326+ and CD44+CD24-. Moreover, the BMI1 gene was overexpressed in 5Fu-resistant cells, and BMI1 knockdown effectively reversed chemoresistance. The BMI1 protein was highly expressed consistently in the remaining GC tissues after 5Fu-based neoadjuvant chemotherapy, and BMI1 levels were correlated positively with recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy. Conclusions: Our data provided molecular evidence illustrating that 5Fu chemotherapy in GC resulted in acquisition of CSC-like properties. Moreover, enhanced BMI1 expression contributed to 5Fu resistance and may serve as a potential therapeutic target to reverse chemoresistance in GC patients.  相似文献   

18.
ATBF1 is a candidate tumor suppressor that interacts with estrogen receptor (ER) to inhibit the function of estrogen-ER signaling in gene regulation and cell proliferation control in human breast cancer cells. We therefore tested whether Atbf1 and its interaction with ER modulate the development of pubertal mammary gland, where estrogen is the predominant steroid hormone. In an in vitro model of cell differentiation, i.e., MCF10A cells cultured in Matrigel, ATBF1 expression was significantly increased, and knockdown of ATBF1 inhibited acinus formation. During mouse mammary gland development, Atbf1 was expressed at varying levels at different stages, with higher levels during puberty, lower during pregnancy, and the highest during lactation. Knockout of Atbf1 at the onset of puberty enhanced ductal elongation and bifurcation and promoted cell proliferation in both ducts and terminal end buds of pubertal mammary glands. Enhanced cell proliferation primarily occurred in ER-positive cells and was accompanied by increased expression of ER target genes. Furthermore, inactivation of Atbf1 reduced the expression of basal cell markers (CK5, CK14 and CD44) but not luminal cell markers. These findings indicate that Atbf1 plays a role in the development of pubertal mammary gland likely by modulating the function of estrogen-ER signaling in luminal cells and by modulating gene expression in basal cells.  相似文献   

19.
20.
In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号