首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Male Poecilobothrus nobilitatus show two distinct kinds of pursuit. Females are “shadowed” at a distance of a few cm, using both rotational and lateral movements. Other males are chased, in a pursuit that involves only rotation and fast forward flight. The rotational component of pursuit appears to have the same control system in both types of tracking, and it is best described as a continuous translation of the error angle between the direction of the target and the pursuing fly's body axis into the pursuing fly's angular velocity. The constant of proportionality is 30–40°·s?1 per degree, and the delay in the system is about 15 ms. Pursuit on the ground is 2–3 times slower than in flight, although the delay seems to be similar.
  2. Attempts were made to see whether the aerial pursuits could be modelled effectively by a saccadic or discontinuous control system, as suggested for Musca pursuit (Wagner 1986). It was found that the velocity profiles of the chases could be fitted by an overlapping series of plausible saccade-like events, However, the correlation between visual information (error angle and error angular velocity) available just before each fictive saccade correlated poorly with saccade peak velocity. It is thus concluded that Poedlobothrus pursuit is basically continuous in nature, but it is argued that the two types of mechanism are hard to distinguish in natural behaviour.
  相似文献   

2.
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions.  相似文献   

3.
Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.  相似文献   

4.
5.
K Havermann  R Volcic  M Lappe 《PloS one》2012,7(6):e39708
Saccades are so called ballistic movements which are executed without online visual feedback. After each saccade the saccadic motor plan is modified in response to post-saccadic feedback with the mechanism of saccadic adaptation. The post-saccadic feedback is provided by the retinal position of the target after the saccade. If the target moves after the saccade, gaze may follow the moving target. In that case, the eyes are controlled by the pursuit system, a system that controls smooth eye movements. Although these two systems have in the past been considered as mostly independent, recent lines of research point towards many interactions between them. We were interested in the question if saccade amplitude adaptation is induced when the target moves smoothly after the saccade. Prior studies of saccadic adaptation have considered intra-saccadic target steps as learning signals. In the present study, the intra-saccadic target step of the McLaughlin paradigm of saccadic adaptation was replaced by target movement, and a post-saccadic pursuit of the target. We found that saccadic adaptation occurred in this situation, a further indication of an interaction of the saccadic system and the pursuit system with the aim of optimized eye movements.  相似文献   

6.
Abstract

The purpose of this study was to investigate the effect of eye movement on the control of arm movement to a target. Healthy humans flexed the elbow to a stationary target in response to a start tone. Simultaneously, the subject moved the eyes to the target (saccade eye movement), visually tracked a laser point moving with the arm (smooth pursuit eye movement), or gazed at a stationary start point at the midline of the horizontal visual angle (non-eye movement—NEM). Arm movement onset was delayed when saccade eye movement accompanied it. The onset of an electromyographic burst in the biceps muscle and the onset of saccade eye movement were almost simultaneous when both the arm and the eyes moved to the target. Arm movement duration during smooth pursuit eye movement was significantly longer than that during saccade eye movement or NEM. In spite of these findings, amplitudes of motor-evoked potential in the biceps and triceps brachii muscles were not significantly different among the eye movement conditions. These findings indicate that eye movement certainly affects the temporal control of arm movement, but may not affect corticospinal excitability in the arm muscles during arm movement.  相似文献   

7.
Precision of trunk movement has commonly been examined by testing relocation accuracy rather than evaluating accuracy of tracking dynamic movement. In this study we used a 3-D motion capture system to provide a novel real-time tracking task to assess trunk motor control at varying movement speeds between people with and without chronic non-specific low back pain (LBP). Eleven asymptomatic volunteers and 15 participants with chronic non-specific LBP performed 12 continuous cycles of trunk flexion–extension following real time visual feedback, during which, trunk motion was measured using eight optoelectronic infrared cameras. Significant time differences between the feedback and actual trunk motion were found between groups (P = 0.001). Both groups had similar variability of tracking accuracy when following the feedback (P > 0.05). However, tracking variability at a slow speed correlated (P = 0.03; r = 0.55) with the Fear-Avoidance Beliefs Questionnaire (FABQ) scores in those with LBP. This study shows that both asymptomatic people and individuals with LBP displayed anticipatory behaviour, however, the response of those with LBP was consistently delayed in tracking the visual feedback compared to the asymptomatic group. Additionally, the extent of variability of tracking accuracy over repeated tracking cycles was associated with the degree of fear of movement in people with LBP.  相似文献   

8.
Indole alkaloids can be characterized by skeletal specialization (S), determined upon consideration of their relative position on a biogenetic map and the number of their naturally occurring substitutional derivatives, as well as by oxidation level (O). The mean (S) and (O) for contained alkaloids of a given plant taxon are taken to represent evolutionary advancement parameters, respectively EAs and EAo.A correlation of these EAs/EAo values for tribes of the Apocynaceae-Plumerioideae reveals a chemical gradient, given by gradually increasing EAs and EAo values, to link Carisseae-Alstonieae-Rauvolfieae-Tabernaemontaneae.  相似文献   

9.
The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target’s anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.  相似文献   

10.
This paper concerns the use of tracking studies to test a theoretical account of the information processing performed by the human CNS during control of movement. The theory provides a bridge between studies of reaction time and continuous tracking. It is proposed that the human CNS includes neuronal circuitry to compute inverse internal models of the multiple input, multiple output, dynamic, nonlinear relationships between outgoing motor commands and their resulting perceptual consequences. The inverse internal models are employed during movement execution to transform preplanned trajectories of desired perceptual consequences into appropriate outgoing motor commands to achieve them. A finite interval of time is required by the CNS to preplan the desired perceptual consequences of a movement and it does not commence planning a new movement until planning of the old one has been completed. This behavior introduces intermittency into the planning of movements. In this paper we show that the gain and phase frequency response characteristics of the human operator in a visual pursuit tracking task can be derived theoretically from these assumptions. By incorporating the effects of internal model inaccuracy and of speed-accuracy trade-off in performance, it is shown that various aspects of experimentally measured tracking behavior can be accounted for.  相似文献   

11.
Sensory feedback is very important for movement control. However, feedback information has not been directly used to update movement prediction model in the previous BMI studies, although the closed-loop BMI system provides the visual feedback to users. Here, we propose a BMI framework combining image processing as the feedback information with a novel prediction method. The feedback-prediction algorithm (FPA) generates feedback information from the positions of objects and modifies movement prediction according to the information. The FPA predicts a target among objects based on the movement direction predicted from the neural activity. After the target selection, the FPA modifies the predicted direction toward the target and modulates the magnitude of the predicted vector to easily reach the target. The FPA repeats the modification in every prediction time points. To evaluate the improvements of prediction accuracy provided by the feedback, we compared the prediction performances with feedback (FPA) and without feedback. We demonstrated that accuracy of movement prediction can be considerably improved by the FPA combining feedback information. The accuracy of the movement prediction was significantly improved for all subjects (P<0.001) and 32.1% of the mean error was reduced. The BMI performance will be improved by combining feedback information and it will promote the development of a practical BMI system.  相似文献   

12.

Background

When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions.

Methodology/Principal Findings

We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation.

Conclusions/Significance

The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies would be required for reaching adaptation within a short training period.  相似文献   

13.

Background

Adjustment to a visuo-motor rotation is known to be affected by ageing. According to previous studies, the age-related differences primarily pertain to the use of strategic corrections and the generation of explicit knowledge on which strategic corrections are based, whereas the acquisition of an (implicit) internal model of the novel visuo-motor transformation is unaffected. The present study aimed to assess the impact of augmented information on the age-related variation of visuo-motor adjustments.

Methodology/Principal Findings

Participants performed aiming movements controlling a cursor on a computer screen. Visual feedback of direction of cursor motion was rotated 75° relative to the direction of hand motion. Participants had to adjust to this rotation in the presence and absence of an additional hand-movement target that explicitly depicted the input-output relations of the visuo-motor transformation. An extensive set of tests was employed in order to disentangle the contributions of different processes to visuo-motor adjustment. Results show that the augmented information failed to affect the age-related variations of explicit knowledge, adaptive shifts, and aftereffects in a substantial way, whereas it clearly affected initial direction errors during practice and proprioceptive realignment.

Conclusions

Contrary to expectations, older participants apparently made no use of the augmented information, whereas younger participants used the additional movement target to reduce initial direction errors early during practice. However, after a first block of trials errors increased, indicating a neglect of the augmented information, and only slowly declined thereafter. A hypothetical dual-task account of these findings is discussed. The use of the augmented information also led to a selective impairment of proprioceptive realignment in the younger group. The mere finding of proprioceptive realignment in adaptation to a visuo-motor rotation in a computer-controlled setup is noteworthy since visual and proprioceptive information pertain to different objects.  相似文献   

14.
Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images.  相似文献   

15.
《Bio Systems》2007,87(1-3):3-17
Visual pigments are photosensitive receptor proteins that trigger the transduction process producing the visual excitation once they have absorbed photons. In spite of the molecular and morpho-functional complexity that has characterized the development of animal eyes and eyeless photoreceptive systems, opsin-based protein family appears ubiquous along metazoan visual systems. Moreover, in addition to classic rhodopsin photoreceptors, all Metazoa have supplementary non-visual photosensitive structures, mainly located in the central nervous system, that sense light without forming an image and that rather regulate the organism's temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. Here we propose the cnidarian Hydra as a useful tool of investigation for molecular and functional differences between these pigment families. Hydra is the first metazoan owning a nervous system and it is an eyeless invertebrate showing only an extraocular photoreception, as it has no recognized visual or photosensitive structures. In this paper we provide an overview of the molecular and functional features of the opsin-based protein subfamilies and preliminary evidences in a phylogenetically old species of both image-forming and non-visual opsins. Then we give new insights on the molecular biology of Hydra photoreception and on the evolutionary pathways of visual pigments.  相似文献   

16.
Motion is a potent sub-modality of vision. Motion cues alone can be used to segment images into figure and ground and break camouflage. Specific patterns of motion support vivid percepts of form, guide locomotion by specifying directional heading and the passage of objects, and in case of an impending collision, the time to impact. Visual motion also drives smooth pursuit eye movements (SPEMs) that serve to stabilize the retinal image of objects in motion. In contrast, the auditory system does not appear to be particularly sensitive to motion. We review the ambiguous status of auditory motion processing from the psychophysical and electrophysiological perspectives. We then report the results of two experiments that use ocular tracking performance as an objective measure of the perception of auditory motion in humans. We examine ocular tracking of auditory motion, visual motion, combined auditory + visual motion and imagined motion in both the frontal plane and in depth. The results demonstrate that ocular tracking of auditory motion is no better than ocular tracking of imagined motion. These results are consistent with the suggestion that, unlike the visual system, the human auditory system is not endowed with low-level motion sensitive elements. We hypothesize however, that auditory information may gain access to a recently described high-level motion processing system that is heavily dependent on 'top-down' influences, including attention.  相似文献   

17.
The Arabidopsis thaliana RESISTANCE TO POWDERY MILDEW8.2 (RPW8.2) protein is specifically targeted to the extrahaustorial membrane (EHM) encasing the haustorium, or fungal feeding structure, where RPW8.2 activates broad-spectrum resistance against powdery mildew pathogens. How RPW8.2 activates defenses at a precise subcellular locale is not known. Here, we report a comprehensive mutational analysis in which more than 100 RPW8.2 mutants were functionally evaluated for their defense and trafficking properties. We show that three amino acid residues (i.e., threonine-64, valine-68, and aspartic acid-116) are critical for RPW8.2-mediated cell death and resistance to powdery mildew (Golovinomyces cichoracearum UCSC1). Also, we reveal that two arginine (R)– or lysine (K)–enriched short motifs (i.e., R/K-R/K-x-R/K) make up the likely core EHM-targeting signals, which, together with the N-terminal transmembrane domain, define a minimal sequence of 60 amino acids that is necessary and sufficient for EHM localization. In addition, some RPW8.2 mutants localize to the nucleus and/or to a potentially novel membrane that wraps around plastids or plastid-derived stromules. Results from this study not only reveal critical amino acid elements in RPW8.2 that enable haustorium-targeted trafficking and defense, but also provide evidence for the existence of a specific, EHM-oriented membrane trafficking pathway in leaf epidermal cells invaded by powdery mildew.  相似文献   

18.
《Inorganica chimica acta》1986,123(4):237-241
The uncatalysed hydrolysis of 4-nitrophenyl L-leucinate has been studied in detail over a range of pH and temperature at I=0.1 M (KNO3). Base hydrolysis of the ester is strongly promoted by copper(II) ions. Rate constants have been obtained for the following reactions (where EH+ is the N- protonated ester and E is the free base form) EH+ + OH → products E + OH → products E + H2O → products CuE2+ + OH → products Base hydrolysis of the copper(II) complex CuE2+ is 3.8 × 105 times faster than that of E and 75 times faster than that of EH+ at 25 °C and I=0.1 M. Activation parameters for these reactions have been determined and possible mechanisms are considered.  相似文献   

19.

Introduction

The purpose of this study was to determine whether sensorimotor abnormalities are detectable in asymptomatic individuals deemed at risk of developing carpal tunnel syndrome (CTS)

Methods

Seventeen individuals deemed at risk of developing CTS and 16 asymptomatic individuals deemed to be at minimal risk of developing CTS participated. Nerve conduction velocity, two-point discrimination ability, pressure acuity, Purdue Pegboard Test performance and tracking error and tracking variance on a manual tracking task performed at two different speeds were measured in all participants and compared between the groups.

Results

None of the measures of nerve conduction, sensory perception, or Purdue Pegboard task performance were different between the groups. The error in the manual tracking tasks was significantly different between the groups, where the at-risk group demonstrated more error than the control group.

Conclusion

These results suggest that manual tracking tasks may be useful in the identification of those individuals at risk of developing CTS before they develop any measurable sensorimotor impairment.  相似文献   

20.
Ultrasound can be used to study tendon movement. However, measurement of tendon movement is mostly based on manual tracking of anatomical landmarks such as the musculo-tendinous junction, limiting the applicability to a small number of muscle-tendon units. The aim of this study was to quantify tendon displacement without anatomical landmarks using a speckle tracking algorithm optimized for tendons in long B-mode image sequences. A dedicated two-dimensional multi-kernel block-matching scheme with subpixel motion estimation was devised to handle large displacements over long sequences. The accuracy of the tracking on porcine tendons was evaluated during different displacements and velocities. Subsequently, the accuracy of tracking the flexor digitorum superficialis (FDS) of a human cadaver hand was evaluated. Finally, the in-vivo accuracy of the tendon tracking was determined by measuring the movement of the FDS at the wrist level. For the porcine experiment and the human cadaver arm experiment tracking errors were, on average, 0.08 and 0.05 mm, respectively (1.3% and 1.0%). For the in-vivo experiment the tracking error was, on average, 0.3 mm (1.6%). This study demonstrated that our dedicated speckle tracking can quantify tendon displacement at different physiological velocities without anatomical landmarks with high accuracy. The technique allows tracking over large displacements and in a wider range of tendons than by using anatomical landmarks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号