首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two peptides (Lcn-α and Lcn-β) of the two-peptide bacteriocin lactococcin G (Lcn) were changed by stepwise site-directed mutagenesis into the corresponding peptides (Ent-α and Ent-β) of the two-peptide bacteriocin enterocin 1071 (Ent), and the potencies and specificities of the various hybrid constructs were determined. Both Lcn and, to a lesser extent, Ent were active against all the tested lactococcal strains, but only Ent was active against the tested enterococcal strains. The two bacteriocins thus differed in their relative potencies to various target cells, despite their sequence similarities. The hybrid combination Lcn-α+Ent-β had low potency against all strains tested, indicating that these two peptides do not interact optimally. The reciprocal hybrid combination (i.e., Ent-α+Lcn-β), in contrast, was highly potent, indicating that these two peptides may form a functional antimicrobial unit. In fact, this hybrid combination (Ent-α+Lcn-β) was more potent against lactococcal strains than wild-type Ent was (i.e., Ent-α+Ent-β), but it was inactive against enterococcal strains (in contrast to Ent but similar to Lcn). The observation that Ent-α is more active against lactococci in combination with Lcn-β and more active against enterococci in combination with Ent-β suggests that the β peptide is an important determinant of target cell specificity. Especially the N-terminal residues of the β peptide seem to be important for specificity, since Ent-α combined with an Ent-β variant with Ent-to-Lcn mutations at positions 1 to 4, 7, 9, and 10 was >150-fold less active against enterococcal strains but one to four times more active against lactococcal strains than Ent-α+Ent-β. Moreover, Ent-to-Lcn single-residue mutations in the region spanning residues 1 to 7 in Ent-β had a more detrimental effect on the activity against enterococci than on that against lactococcal strains. Of the single-residue mutations made in the N-terminal region of the α peptide, the Ent-to-Lcn mutations N8Q and P12R in Ent-α influenced specificity, as follows: the N8Q mutation had no effect on activity against tested enterococcal strains but increased the activity 2- to 4-fold against the tested lactococcal strains, and the P12R mutation reduced the activity >150-fold and only ~2-fold against enterococcal and lactococcal strains, respectively. Changing residues in the C-terminal half/part of the Lcn peptides (residues 20 to 39 and 25 to 35 in Lcn-α and Lcn-β, respectively) to those found in the corresponding Ent peptides did not have a marked effect on the activity, but there was an ~10-fold or greater reduction in the activity upon also introducing Lcn-to-Ent mutations in the mid-region (residues 8 to 19 and 9 to 24 in Lcn-α and Lcn-β, respectively). Interestingly, the Lcn-to-Ent F19L+G20A mutation in an Lcn-Ent-β hybrid peptide was more detrimental when the altered peptide was combined with Lcn-α (>10-fold reduction) than when it was combined with Ent-α (~2-fold reduction), suggesting that residues 19 and 20 (which are part of a GXXXG motif) in the β peptide may be involved in a specific interaction with the cognate α peptide. It is also noteworthy that the K2P and A7P mutations in Lcn-β reduced the activity only ~2-fold, suggesting that the first seven residues in the β peptides do not form an α-helix.  相似文献   

2.
β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer’s disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.  相似文献   

3.
Smith MA 《Plant physiology》1981,68(4):956-963
A single glycoprotein accounts for the majority of radioactivity secreted to the cell wall when incubated carrot (Daucus carota) discs are labeled with radioactive proline or arabinose. The ferrous chelator α,α′-dipyridyl prevents the synthesis of this protein. A new proline-labeled protein is made in the presence of α,α′-dipyridyl and is secreted to the cell wall. The protein has little, if any, carbohydrate attached to it and has a molecular weight of 55,000 daltons. This protein appears to be the nonhydroxylated, nonglycosylated form of the major cell wall glycoprotein. α,α′-Dipyridyl does not prevent proline label from becoming tightly (presumably covalently) bound to the cell wall, providing further evidence that hydroxylation and arabinosylation are not required for the covalent attachment of proteins to the cell wall. Messenger RNA extracted from incubated carrot discs produces a product which electrophoreses similarly to the protein made in the presence of α,α′-dipyridyl. The possible use of the carrot disc system to study gene structure and regulation is discussed.  相似文献   

4.
Mechanistic Properties of the Two-Component Bacteriocin Lactococcin G   总被引:10,自引:2,他引:8       下载免费PDF全文
Lactococcin G is a bacteriocin whose activity depends on the complementary action of two peptides, termed α and β. Biologically active, synthetic lactococcin G was used to study the mode of action on sensitive cells of Lactococcus lactis. The α and β peptides can bind independently to the target cell surface, but activity requires the complementary peptide. Once bound to the cell surface, the peptides cannot be displaced to the surfaces of other cells. A complex of α and β peptides forms a transmembrane pore that conducts monovalent cations but not protons. Efflux of potassium ions is observed only above pH 5.0, and the rate of efflux increases steeply with the pH. The consequences of cation fluxes for the viability of the target cells are discussed.  相似文献   

5.
6.
Activity-dependent synaptic plasticity underlies, at least in part, learning and memory processes. NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) is a major synaptic plasticity model. During LTP induction, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated, autophosphorylated and persistently translocated to the postsynaptic density, where it binds to the NMDAR. If any of these steps is inhibited, LTP is disrupted. The endogenous CaMKII inhibitor proteins CaMKIINα,β are rapidly upregulated in specific brain regions after learning. We recently showed that transient application of peptides derived from CaMKIINα (CN peptides) persistently depresses synaptic strength and reverses LTP saturation, as it allows further LTP induction in previously saturated pathways. The treatment disrupts basal CaMKII-NMDAR interaction and decreases bound CaMKII fraction in spines. To unravel CaMKIIN function and to further understand CaMKII role in synaptic strength maintenance, here we more deeply investigated the mechanism of synaptic depression induced by CN peptides (CN-depression) in rat hippocampal slices. We showed that CN-depression does not require glutamatergic synaptic activity or Ca2+ signaling, thus discarding unspecific triggering of activity-dependent long-term depression (LTD) in slices. Moreover, occlusion experiments revealed that CN-depression and NMDAR-LTD have different expression mechanisms. We showed that CN-depression does not involve complex metabolic pathways including protein synthesis or proteasome-mediated degradation. Remarkably, CN-depression cannot be resolved in neonate rats, for which CaMKII is mostly cytosolic and virtually absent at the postsynaptic densities. Overall, our results support a direct effect of CN peptides on synaptic CaMKII-NMDAR binding and suggest that CaMKIINα,β could be critical plasticity-related proteins that may operate as cell-wide homeostatic regulators preventing saturation of LTP mechanisms or may selectively erase LTP-induced traces in specific groups of synapses.  相似文献   

7.
Immunotherapy approaches for Alzheimer disease currently are among the leading therapeutic directions for the disease. Active and passive immunotherapy against the β-amyloid peptides that aggregate and accumulate in the brain of those afflicted by the disease have been shown by numerous groups to reduce plaque pathology and improve behavior in transgenic mouse models of the disease. Several ongoing immunotherapy clinical trials for Alzheimer disease are in progress. The background and ongoing challenges for these immunological approaches for the treatment of Alzheimer disease are discussed.Key words: Alzheimer disease, amyloid, tau, immunotherapy, vaccineThe publication in Nature on a vaccine approach for Alzheimer disease (AD) by Schenk and colleagues in 1999 initiated a push for treatment for this major disease of aging. AD neuropathology is characterized by the progressive loss of synapses and neurons, and the aberrant accumulation in the brain of β-amyloid peptides in plaques and the microtubule associated protein tau in neurofibrillary tangles. Mutations in familial forms of AD have been associated with elevated β-amyloid levels, whereas mutations in tau have been linked to familial forms of frontotemporal dementia. Remarkably, injection of β-amyloid peptides with Freund''s adjuvant into transgenic mice harboring a human AD mutation that develop AD-like neuropathology and progressive cognitive decline led to reduced β-amyloid plaque pathology.1 This study was subsequently confirmed and extended by multiple groups to show also behavioral improvement in AD transgenic mice with active β-amyloid immunization.2,3 Passive immunotherapy with antibodies directed at β-amyloid were similarly effective in reducing plaques and improving behavior in AD transgenic mice.4 A temporary setback occurred when the first clinical trial with β-amyloid vaccination was halted after 6% of patients developed an inflammatory reaction in the brain (chemical meningoencephalitis). A subsequent study supported clinical benefits among patients in this active vaccination trial.5 A more recent postmortem study on a subset of patients who had participated in the aborted trial supported active removal of β-amyloid plaques by inflammatory cells, but also indicated that 7 of the 8 patients who were studied at autopsy continued to have progressive cognitive decline despite the removal of amyloid plaques.6The critical mechanisms whereby active or passive vaccination against β-amyloid can affect the disease process remain uncertain. Recruitment and activation of microglia, the macrophage of the central nervous system, by β-amyloid antibodies is thought to lead to β-amyloid plaque removal. At the same time, fibrillar β-amyloid containing plaques, formerly viewed as the major toxic entities in AD, are increasingly viewed as potentially only pathological remnants of the disease. Smaller assemblies, particularly of two to twelve β-amyloid peptides (oligomers), are considered pathogenic, although the site of pathogenesis remains controversial. Secreted, extracellular β-amyloid oligomers have been shown to damage synapses.7 Some groups stress the aberrant accumulation of β-amyloid within neurons and synapses leading to subsequent extracellular localization following destruction of neurites and synapses.8 Evidence has been presented that antibodies targeting β-amyloid peptides up to 42–43 amino acids can block the toxic effects of extracellular β-amyloid oligomers on synapses.7 Interestingly, β-amyloid immunotherapy was also shown to clear intraneuronal β-amyloid in an AD transgenic mouse; the intraneuronal variety is a pool of β-amyloid that correlates with the onset of cognitive decline prior to plaques and tangles in these mice.9 Intriguingly, antibodies directed at the β-amyloid domain exposed to the extracellular space within the amyloid precursor protein (APP) were shown to be internalized by neurons, where they reduced the intraneuronal pool of β-amyloid and protected against synaptic damage in neurons cultured from AD transgenic mice.10,11 It is possible that inefficient clearance of the intracellular pool of β-amyloid played a role in the continued cognitive decline in the seven of eight patients in the aborted active vaccination clinical trial studied at autopsy who showed clearance of β-amyloid plaques.Work on β-amyloid immunotherapy in AD contributed to a reevaluation of the role of the immune system in the brain. Previously, it was considered that the brain was immune privileged, and that antibodies entered the brain only with the breakdown of the blood brain barrier. Rare neuroimmunological disorders had suggested more complex interactions. Pathological antibodies directed at neuronal proteins could be found localizing to specific types of neurons in paraneoplastic diseases linked to diverse systemic cancers12,13 or collagen-vascular diseases such as lupus.14 Such pathological antibodies can be directed at synaptic or even intracellular proteins in selective neurons in the brain, leading to localized neurological symptoms. For paraneoplastic diseases it is hypothesized that antibodies directed at the cancer cells cross-react with neuronal antigens. Since titers of antibodies can be higher in brain than in the blood, intrathecal synthesis of antibodies from sequestration of B cells has been proposed to occur in the brain.15 The interaction between the immune system and the brain is therefore viewed as increasingly complex, with antibodies not only gaining access to the brain but also nerve cells, where they can even alter intracellular biology.10 These findings open up new possibilities for antibody-directed therapies for diseases of the nervous system.Currently, leading concerns for β-amyloid immunotherapy are the potential development of chemical meningoencephalitis and micro-hemorrhages in the brain. Involvement of T cells in damage to the brain vasculature is considered to contribute to these potential side effects. In addition, the β-amyloid released upon antibody-induced removal of plaques may damage blood vessels as β-amyloid is cleared from the brain via the vasculature.16 Recently, a phase 2 Elan/Wyeth study using passive β-amyloid immunotherapy with a humanized monoclonal antibody described (at the 2008 International Conference on Alzheimer''s disease) significant benefits in patients not harboring the apolipoprotein E4 (apoE4) allele genetic risk factor for late onset AD. In contrast, no clear therapeutic benefit and more cases with brain inflammation occurred in those with the apoE4 allele linked with an increased risk for AD. Why apoE4 carriers did not benefit in this β-amyloid immunotherapy trial is unknown, but has prompted separation of patients into E4 negative and positive groups in subsequent clinical trials. The less robust than hoped for effects even in the apoE4 negative patients has further dampened expectations. The reason for why the human studies are not showing the protection seen in the transgenic mouse studies could relate to β-amyloid playing less of a role in the more typical late onset AD than it does in the rare autosomal dominant familial forms used to generate the AD transgenic mice. It is also not clear which β-amyloid epitope(s) should be targeted by antibodies to maximize potential benefits while minimizing side effects in AD patients. Optimizing antibody specificity for immunotherapy is further complicating by the varied conformations of different β-amyloid aggregation states. In addition, β-amyloid immunotherapy may be more challenging in patients with AD because it is not effective in reducing tau tangle pathology.6 Most immunotherapy studies were done on transgenic AD mouse models that deposit β-amyloid plaques, but not tau tangles. In the more recently generated triple transgenic AD mouse that develops both plaques and tangles, β-amyloid antibodies reversed β-amyloid pathology and early pre-tangle tau pathology, but not hyperphosphorylated tau aggregates.8 Recent evidence supports that β-amyloid neurotoxicity acts synergistic with tau,17 and that both pathologies begin at synapses.18 Interestingly, tau immunotherapy was reported to protect against tau pathology in transgenic mice harboring mutant tau.19 Thus, dual immunotherapy targeting of both β-amyloid and tau can be considered. Finally, immunotherapy at earlier stages of the disease process may be more effective.In summary, the β-amyloid vaccine heralded a new era of therapeutic research for AD and despite some setbacks is actively being pursued in several ongoing clinical trials. It continues to be among the leading hopes in the AD research community. Another major effort to specifically block the generation of β-amyloid is also progressing, although not without setbacks along the way. For example, the protease involved in the final cleavage to liberate β-amyloid was found to be involved in multiple other important activities, such as cleavage of Notch. Antibody approaches are also being applied in efforts to block secretase cleavage to generate β-amyloid.20 Finally, there remains some worry that β-amyloid peptides have an as yet unknown normal biological function, although cumulative immunotherapy and other therapeutic studies in animal models have provided sufficient support for the continued pursuit of β-amyloid lowering as a treatment for AD.  相似文献   

8.
Antimicrobial peptides have attracted much interest as a novel class of antibiotics against a variety of microbes including antibiotics resistant strains. In this study, a new cationic antimicrobial peptide Hp1404 was identified from the scorpion Heterometrus petersii, which is an amphipathic α-helical peptide and has a specific inhibitory activity against gram-positive bacteria including methicillin-resistant Staphylococcus aureus. Hp1404 can penetrate the membrane of S. aureus at low concentration, and disrupts the cellular membrane directly at super high concentration. S. aureus does not develop drug resistance after multiple treatments with Hp1404 at sub MIC concentration, which is possibly associated with the antibacterial mechanism of the peptide. In addition, Hp1404 has low toxicity to both mammalian cells (HC50  =  226.6 µg/mL and CC50 > 100 µg/mL) and balb-c mice (Non-toxicity at 80 mg/Kg by intraperitoneal injection and LD50  =  89.8 mg/Kg by intravenous injection). Interestingly, Hp1404 can improve the survival rate of the MRSA infected balb-c mice in the peritonitis model. Taken together, Hp1404 may have potential applications as an antibacterial agent.  相似文献   

9.
Fungi and bacteria compete with an arsenal of secreted molecules for their ecological niche. This repertoire represents a rich and inexhaustible source for antibiotics and fungicides. Antimicrobial peptides are an emerging class of fungal defense molecules that are promising candidates for pharmaceutical applications. Based on a co-cultivation system, we studied the interaction of the coprophilous basidiomycete Coprinopsis cinerea with different bacterial species and identified a novel defensin, copsin. The polypeptide was recombinantly produced in Pichia pastoris, and the three-dimensional structure was solved by NMR. The cysteine stabilized α/β-fold with a unique disulfide connectivity, and an N-terminal pyroglutamate rendered copsin extremely stable against high temperatures and protease digestion. Copsin was bactericidal against a diversity of Gram-positive bacteria, including human pathogens such as Enterococcus faecium and Listeria monocytogenes. Characterization of the antibacterial activity revealed that copsin bound specifically to the peptidoglycan precursor lipid II and therefore interfered with the cell wall biosynthesis. In particular, and unlike lantibiotics and other defensins, the third position of the lipid II pentapeptide is essential for effective copsin binding. The unique structural properties of copsin make it a possible scaffold for new antibiotics.  相似文献   

10.
Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with β-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a β-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to β-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to β-1,3–1,4-glucans while substantially decreasing the affinity for decorated β-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified β-1,3–1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.  相似文献   

11.
Integrins are transmembrane heterodimeric receptors responsible for transducing and modulating signals between the extracellular matrix and cytoskeleton, ultimately influencing cell functions such as adhesion and migration. Integrin α9β1 is classified within a two member sub-family of integrins highlighted in part by its specialized role in cell migration. The importance of this role is demon-strated by its regulation of numerous biological functions including lymphatic valve morphogenesis, lymphangiogenesis, angiogenesis and hematopoietic homeostasis. Compared to other integrins the signaling mechanisms that transduce α9β1-induced cell migration are not well described. We have recently shown that Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Specifically it activates inducible nitric oxide synthase (iNOS) and in turn nitric oxide (NO) production as a means to transduce cell migration. Furthermore, we have also described a role for FAK, Erk and Rac1 in α9β1 signal transduction. Here we provide an over view of known integrin α9β1 signaling pathways and highlight its roles in diverse biological conditions.Key words: integrin, α9β1, nitric oxide, VEGF, cell migration, cell adhesion  相似文献   

12.
A prominent histopathological feature of Sjögren''s syndrome, an autoimmune disease, is the presence of lymphocytic infiltrates in the salivary and lachrymal glands. Such infiltrates are comprised of activated lymphocytes and macrophages, and known to produce multiple cytokines including interferon-gamma (IFN-γ). In this study, we have demonstrated that IFN-γ strongly induces the expression of immunoproteasome beta subunits (β1i, β2i and β5i) and immunoproteasome activity but conversely inhibits the expression of proteasome beta subunits (β1, β2 and β5) in human salivary gland (HSG) cells. Mass spectrometric analysis has revealed potential MHC I-associated peptides on the HSG cells, including a tryptic peptide derived from salivary amylase, due to IFN-γ stimulation. These results suggest that IFN-γ induces immunoproteasomes in HSG cells, leading to enhanced presentation of MHC I-associated peptides on cell surface. These peptide-presenting salivary gland cells may be recognized and targeted by auto-reactive T lymphocytes. We have also found that lactacystin, a proteasome inhibitor, inhibits the expression of β1 subunit in HSG cells and blocks the IFN-γ-induced expression of β1i and immunoproteasome activity. However, the expression of β2i and β5i in HSG cells is not affected by lactacystin. These results may add new insight into the mechanism regarding how lactacystin blocks the action of proteasomes or immunoproteasomes.  相似文献   

13.
Alzheimer’s disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-β peptides (Aβ) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-β precursor protein (APP) by β- and γ-secretases, with the latter being the founding member of a new class of intramembrane-cleaving proteases (I-CliPs) characterized by their intramembranous catalytic residues hydrolyzing the peptide bonds within the transmembrane regions of their respective substrates. These proteases include the S2P family of metalloproteases, the Rhomboid family of serine proteases, and two aspartyl proteases: the signal peptide peptidase (SPP) and γ-secretase. In sharp contrast to Rhomboid and SPP that function as a single component, γ-secretase is a multi-component protease with complex assembly, maturation and activation processes. Recently, two low-resolution three-dimensional structures of γ-secretase and three high-resolution structures of the GlpG rhomboid protease have been obtained almost simultaneously by different laboratories. Although these proteases are unrelated by sequence or evolution, they seem to share common functional and structural mechanisms explaining how they catalyze intramembrane proteolysis. Indeed, a water-containing chamber in the catalytic cores of both γ-secretase and GlpG rhomboid provides the hydrophilic environment required for proteolysis and a lateral gating mechanism controls substrate access to the active site. The studies that have identified and characterized the structural determinants critical for the assembly and activity of the γ-secretase complex are reviewed here.  相似文献   

14.
Characterization of the Adaptor-related Protein Complex, AP-3   总被引:27,自引:3,他引:24       下载免费PDF全文
We have recently shown that two proteins related to two of the adaptor subunits of clathrincoated vesicles, p47 (μ3) and β-NAP (β3B), are part of an adaptor-like complex not associated with clathrin (Simpson, F., N.A. Bright, M.A. West, L.S. Newman, R.B. Darnell, and M.S. Robinson, 1996. J. Cell Biol. 133:749–760). In the present study we have searched the EST database and have identified, cloned, and sequenced a ubiquitously expressed homologue of β-NAP, β3A, as well as homologues of the α/γ and σ adaptor subunits, δ and σ3, which are also ubiquitously expressed. Antibodies raised against recombinant δ and σ3 show that they are the other two subunits of the adaptor-like complex. We are calling this complex AP-3, a name that has also been used for the neuronalspecific phosphoprotein AP180, but we feel that it is a more appropriate designation for an adaptor-related heterotetramer. Immunofluorescence using anti-δ antibodies reveals that the AP-3 complex is associated with the Golgi region of the cell as well as with more peripheral structures. These peripheral structures show only limited colocalization with endosomal markers and may correspond to a postTGN biosynthetic compartment. The δ subunit is closely related to the protein product of the Drosophila garnet gene, which when mutated results in reduced pigmentation of the eyes and other tissues. Because pigment granules are believed to be similar to lysosomes, this suggests either that the AP-3 complex may be directly involved in trafficking to lysosomes or alternatively that it may be involved in another pathway, but that missorting in that pathway may indirectly lead to defects in pigment granules.  相似文献   

15.
Adrenocorticotropin and β-lipotropin (β-LPH) have been localized by immunoperoxidase methods in nerve cells and fibers of the hypothalamus and brain stem of the ewe. 6-μm sections were immunostained first for either ACTH or β-LPH. The reaction products and the antibody complexes were then eluted completely from the tissue, and the same section was immunostained for the second peptide. Absorption of the primary antisera with a variety of peptide fragments of ACTH and β-LPH demonstrated, immunocytochemically as well as by radioimmunoassay, that the ACTH and β-LPH antisera were directed to the COOH- and NH(2)-termini of the peptides, respectively. Neither antiserum recognized any portion of the heterologous peptide. In the sequential staining procedure on the same tissue section, preincubation of the antisera with the homologous peptide abolished the staining, whereas preincubation with the heterologous peptide did not affect it, regardless of the order followed. Every nerve cell in the arcuate nucleus that contained ACTH also contained β-LPH, but β-LPH cells appeared, probably falsely, to be twice as numerous as ACTH cells. β-LPH-positive fibers in and beyond the hypothalamus were also more numerous and stained more intensively than ACTH fibers. The salient exception was fibers in the infundibular zona externa, where the opposite was true. Our observations establish that ACTH and β-LPH are contained in the same nerve cells They stongly favor biosynthesis in brain, probably from a common precursor molecule, as has been demonstrated in the pituitary gland. The complexity of the cytologic distribution pattern described suggests that the two peptides are not processed in the same manner by the nerve cell.  相似文献   

16.
We have developed a structurally-guided scaffold phage display strategy for identification of ligand mimetic bio-therapeutics. As a proof of concept we used the ligand of integrin αvβ6, a tumour cell surface receptor and a major new target for imaging and therapy of many types of solid cancer. NMR structure analysis showed that RGD-helix structures are optimal for αvβ6 ligand-interaction, so we designed novel algorithms to generate human single chain fragment variable (scFv) libraries with synthetic VH-CDR3 encoding RGD-helix hairpins with helices of differing pitch, length and amino acid composition. Study of the lead scFv clones D25scFv and D34scFv and their corresponding VH-CDR3 derived peptides, D25p and D34p, demonstrated: specific binding to recombinant and cellular αvβ6; inhibition of αvβ6-dependent cell and ligand adhesion, αvβ6-dependent cell internalisation; and selective retention by αvβ6-expressing, but not αvβ6-negative, human xenografts. NMR analysis established that both the D25p and D34p retained RGD-helix structures confirming the success of the algorithm. In conclusion, scFv libraries can be engineered based on ligand structural motifs to increase the likelihood of developing powerful bio-therapeutics.  相似文献   

17.
Descargues P  Sil AK  Karin M 《The EMBO journal》2008,27(20):2639-2647
IκB kinase α (IKKα), one of the two catalytic subunits of the IKK complex involved in nuclear factor κB (NF-κB) activation, also functions as a molecular switch that controls epidermal differentiation. This unexpected function requires IKKα nuclear translocation but does not depend on its kinase activity, and is independent of NF-κB signalling. Ikkα–/– mice present with a hyperproliferative and undifferentiated epidermis characterized by complete absence of a granular layer and stratum corneum. Ikkα-deficient keratinocytes do not express terminal differentiation markers and continue to proliferate even when subjected to differentiation-inducing stimuli. This antiproliferative function of IKKα is also important for the suppression of squamous cell carcinogenesis. The exact mechanisms by which nuclear IKKα controls keratinocyte proliferation and differentiation remained mysterious for some time. Recent studies, however, have revealed that IKKα is a major cofactor in a TGFβ–Smad2/3 signalling pathway that is Smad4 independent. This pathway controls cell cycle withdrawal during keratinocyte terminal differentiation. Although these are not the only functions of nuclear IKKα, this multifunctional protein is a key regulator of keratinocyte and epidermal differentiation and a critical suppressor of skin cancer.  相似文献   

18.
The aggregation of β‐amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer''s disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ‐secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ‐Secretase modulators (GSMs) represent a promising class of Aβ42‐lowering anti‐amyloidogenic compounds for the treatment of AD. Gamma‐secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ‐secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ‐secretase cleavage of three γ‐secretase substrates, E‐cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ‐secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ‐secretase processing of EphA4 and EphB2 results in the release of several Aβ‐like peptides, but that only the production of Aβ‐like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ‐secretase–mediated Aβ production.  相似文献   

19.
α-defensins are abundant antimicrobial peptides with broad, potent antibacterial, antifungal, and antiviral activities in vitro. Although their contribution to host defense against bacteria in vivo has been demonstrated, comparable studies of their antiviral activity in vivo are lacking. Using a mouse model deficient in activated α-defensins in the small intestine, we show that Paneth cell α-defensins protect mice from oral infection by a pathogenic virus, mouse adenovirus 1 (MAdV-1). Survival differences between mouse genotypes are lost upon parenteral MAdV-1 infection, strongly implicating a role for intestinal defenses in attenuating pathogenesis. Although differences in α-defensin expression impact the composition of the ileal commensal bacterial population, depletion studies using broad-spectrum antibiotics revealed no effect of the microbiota on α-defensin-dependent viral pathogenesis. Moreover, despite the sensitivity of MAdV-1 infection to α-defensin neutralization in cell culture, we observed no barrier effect due to Paneth cell α-defensin activation on the kinetics and magnitude of MAdV-1 dissemination to the brain. Rather, a protective neutralizing antibody response was delayed in the absence of α-defensins. This effect was specific to oral viral infection, because antibody responses to parenteral or mucosal ovalbumin exposure were not affected by α-defensin deficiency. Thus, α-defensins play an important role as adjuvants in antiviral immunity in vivo that is distinct from their direct antiviral activity observed in cell culture.  相似文献   

20.
Cataracts are caused by clouding of the eye lens and may lead to partial or total loss of vision. The mechanism of cataract development, however, is not well understood. It is thought that abnormal aggregates of lens proteins form with age, causing loss of lens clarity and development of the cataract. Lens proteins are composed of soluble α-, β-, and γ-crystallins, and as long lived proteins, they undergo post-translational modifications including isomerization, deamidation, and oxidation, which induce insolubilization, aggregation, and loss of function that may lead to cataracts. Therefore, analysis of post-translational modifications of individual amino acid residues in proteins is important. However, detection of the optical isomers of amino acids formed in these proteins is difficult because optical resolution is only achieved using complex methodology. In this study, we describe a new method for the analysis of isomerization of individual Asp residues in proteins using LC-MS and the corresponding synthetic peptides containing the Asp isomers. This makes it possible to analyze isomers of Asp residues in proteins precisely and quickly. We demonstrate that Asp-58, -76, -84, and -151 of αA-crystallin and Asp-62 and -96 of αB-crystallin are highly converted to lβ-, dβ-, and dα-isomers. The amount of isomerization of Asp is greater in the insoluble fraction at all Asp sites in lens proteins, therefore indicating that isomerization of these Asp residues affects the higher order structure of the proteins and contributes to the increase in aggregation, insolubilization, and disruption of function of proteins in the lens, leading to the cataract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号