首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally believed that the effect of translational selection on codon usage bias is related to the number of transfer RNA genes in bacteria, which is more with respect to the high expression genes than the whole genome. Keeping this in the background, we analyzed codon usage bias with respect to asparagine, isoleucine, phenylalanine, and tyrosine amino acids. Analysis was done in seventeen bacteria with the available gene expression data and information about the tRNA gene number. In most of the bacteria, it was observed that codon usage bias and tRNA gene number were not in agreement, which was unexpected. We extended the study further to 199 bacteria, limiting to the codon usage bias in the two highly expressed genes rpoB and rpoC which encode the RNA polymerase subunits β and β′, respectively. In concordance with the result in the high expression genes, codon usage bias in rpoB and rpoC genes was also found to not be in agreement with tRNA gene number in many of these bacteria. Our study indicates that tRNA gene numbers may not be the sole determining factor for translational selection of codon usage bias in bacterial genomes.  相似文献   

2.
Variation in the strength of selected codon usage bias among bacteria   总被引:15,自引:1,他引:14       下载免费PDF全文
Among bacteria, many species have synonymous codon usage patterns that have been influenced by natural selection for those codons that are translated more accurately and/or efficiently. However, in other species selection appears to have been ineffective. Here, we introduce a population genetics-based model for quantifying the extent to which selection has been effective. The approach is applied to 80 phylogenetically diverse bacterial species for which whole genome sequences are available. The strength of selected codon usage bias, S, is found to vary substantially among species; in 30% of the genomes examined, there was no significant evidence that selection had been effective. Values of S are highly positively correlated with both the number of rRNA operons and the number of tRNA genes. These results are consistent with the hypothesis that species exposed to selection for rapid growth have more rRNA operons, more tRNA genes and more strongly selected codon usage bias. For example, Clostridium perfringens, the species with the highest value of S, can have a generation time as short as 7 min.  相似文献   

3.
Qin H  Wu WB  Comeron JM  Kreitman M  Li WH 《Genetics》2004,168(4):2245-2260
To study the roles of translational accuracy, translational efficiency, and the Hill-Robertson effect in codon usage bias, we studied the intragenic spatial distribution of synonymous codon usage bias in four prokaryotic (Escherichia coli, Bacillus subtilis, Sulfolobus tokodaii, and Thermotoga maritima) and two eukaryotic (Saccharomyces cerevisiae and Drosophila melanogaster) genomes. We generated supersequences at each codon position across genes in a genome and computed the overall bias at each codon position. By quantitatively evaluating the trend of spatial patterns using isotonic regression, we show that in yeast and prokaryotic genomes, codon usage bias increases along translational direction, which is consistent with purifying selection against nonsense errors. Fruit fly genes show a nearly symmetric M-shaped spatial pattern of codon usage bias, with less bias in the middle and both ends. The low codon usage bias in the middle region is best explained by interference (the Hill-Robertson effect) between selections at different codon positions. In both yeast and fruit fly, spatial patterns of codon usage bias are characteristically different from patterns of GC-content variations. Effect of expression level on the strength of codon usage bias is more conspicuous than its effect on the shape of the spatial distribution.  相似文献   

4.
Iriarte A  Baraibar JD  Romero H  Musto H 《Gene》2011,473(2):110-118
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.  相似文献   

5.
Translational selection and yeast proteome evolution   总被引:26,自引:0,他引:26  
Akashi H 《Genetics》2003,164(4):1291-1303
  相似文献   

6.
The typical number of tRNA genes in bacterial genomes is around 50, but this number varies from under 30 to over 120. We argue that tRNA gene copy numbers evolve in response to translational selection. In rapidly multiplying organisms, the time spent in translation is a limiting factor in cell division; hence, it pays to duplicate tRNA genes, thereby increasing the concentration of tRNA molecules in the cell and speeding up translation. In slowly multiplying organisms, translation time is not a limiting factor, so the overall translational cost is minimized by reducing the tRNAs to only one copy of each required gene. Translational selection also causes a preference for codons that are most rapidly translated by the current tRNAs; hence, codon usage and tRNA gene content will coevolve to a state where each is adapted to the other. We show that there is often more than one stable coevolved state. This explains why different combinations of tRNAs and codon bias can exist for different amino acids in the same organism. We analyze a set of 80 complete bacterial genomes and show that the theory predicts many of the trends that are seen in these data.  相似文献   

7.
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas reinhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cyanophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thunbergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchantia polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed. Received: 6 June 1997 / Accepted: 24 July 1997  相似文献   

8.
It has often been suggested that differential usage of codons recognized by rare tRNA species, i.e. "rare codons", represents an evolutionary strategy to modulate gene expression. In particular, regulatory genes are reported to have an extraordinarily high frequency of rare codons. From E. coli we have compiled codon usage data for highly expressed genes, moderately/lowly expressed genes, and regulatory genes. We have identified a clear and general trend in codon usage bias, from the very high bias seen in very highly expressed genes and attributed to selection, to a rather low bias in other genes which seems to be more influenced by mutation than by selection. There is no clear tendency for an increased frequency of rare codons in the regulatory genes, compared to a large group of other moderately/lowly expressed genes with low codon bias. From this, as well as a consideration of evolutionary rates of regulatory genes, and of experimental data on translation rates, we conclude that the pattern of synonymous codon usage in regulatory genes reflects primarily the relaxation of natural selection.  相似文献   

9.
We analyze the frequencies of synonymous codons in animal mitochondrial genomes, focusing particularly on mammals and fish. The frequencies of bases at 4-fold degenerate sites are found to be strongly influenced by context-dependent mutation, which causes correlations between pairs of neighboring bases. There is a pattern of excess of certain dinucleotides and deficit of others that is consistent across large numbers of species, despite the wide variation of single-nucleotide frequencies among species. In many bacteria, translational selection is an important influence on codon usage. In order to test whether translational selection also plays a role in mitochondria, we need to control for context-dependent mutation. Selection for translational accuracy can be detected by comparison of codon usage in conserved and variable sites in the same genes. We give a test of this type that works in the presence of context-dependent mutation. There is very little evidence for translational accuracy selection in the mitochondrial genes considered here. Selection for translational efficiency might lead to preference for codons that match the limited repertoire of anticodons on the mitochondrial tRNAs. This is difficult to detect because the effect would usually be in the same direction in comparable to codon families and so would not cause an observable difference in codon usage between families. Several lines of evidence suggest that this type of selection is weak in most cases. However, we found several cases where unusual bases occur at the wobble position of the tRNA, and in these cases, some evidence for selection on codon usage was found. We discuss the way that these unusual cases are associated with codon reassignments in the mitochondrial genetic code.  相似文献   

10.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

11.
Lavner Y  Kotlar D 《Gene》2005,345(1):127-138
We study the interrelations between tRNA gene copy numbers, gene expression levels and measures of codon bias in the human genome. First, we show that isoaccepting tRNA gene copy numbers correlate positively with expression-weighted frequencies of amino acids and codons. Using expression data of more than 14,000 human genes, we show a weak positive correlation between gene expression level and frequency of optimal codons (codons with highest tRNA gene copy number). Interestingly, contrary to non-mammalian eukaryotes, codon bias tends to be high in both highly expressed genes and lowly expressed genes. We suggest that selection may act on codon bias, not only to increase elongation rate by favoring optimal codons in highly expressed genes, but also to reduce elongation rate by favoring non-optimal codons in lowly expressed genes. We also show that the frequency of optimal codons is in positive correlation with estimates of protein biosynthetic cost, and suggest another possible action of selection on codon bias: preference of optimal codons as production cost rises, to reduce the rate of amino acid misincorporation. In the analyses of this work, we introduce a new measure of frequency of optimal codons (FOP'), which is unaffected by amino acid composition and is corrected for background nucleotide content; we also introduce a new method for computing expected codon frequencies, based on the dinucleotide composition of the introns and the non-coding regions surrounding a gene.  相似文献   

12.
Heger A  Ponting CP 《Genetics》2007,177(3):1337-1348
Codon usage bias in Drosophila melanogaster genes has been attributed to negative selection of those codons whose cellular tRNA abundance restricts rates of mRNA translation. Previous studies, which involved limited numbers of genes, can now be compared against analyses of the entire gene complements of 12 Drosophila species whose genome sequences have become available. Using large numbers (6138) of orthologs represented in all 12 species, we establish that the codon preferences of more closely related species are better correlated. Differences between codon usage biases are attributed, in part, to changes in mutational biases. These biases are apparent from the strong correlation (r = 0.92, P < 0.001) among these genomes' intronic G + C contents and exonic G + C contents at degenerate third codon positions. To perform a cross-species comparison of selection on codon usage, while accounting for changes in mutational biases, we calibrated each genome in turn using the codon usage bias indices of highly expressed ribosomal protein genes. The strength of translational selection was predicted to have varied between species largely according to their phylogeny, with the D. melanogaster group species exhibiting the strongest degree of selection.  相似文献   

13.
14.
15.
Aspergillus is a genus of mold fungi that includes more than 200 described species. Many members of the group are relevant pathogens and other species are economically important. Only one species has been analyzed for codon usage, and this was performed with a small number of genes. In this paper, we report the codon usage patterns of eight completely sequenced genomes which belong to this genus. The results suggest that selection for translational efficiency and accuracy are the major factors shaping codon usage in all of the species studied so far, and therefore they were active in the last common ancestor of the group. Composition and molecular distances analyses show that highly expressed genes evolve slower at synonymous sites. We identified a conserved core of translationally optimal codons and study the tRNA gene pool in each genome. We found that the great majority of preferred triplets match the respective cognate tRNA with more copies in the respective genome. We discuss the possible scenarios that can explain the observed differences among the species analyzed. Finally we highlight the biotechnological application of this research regarding heterologous protein expression.  相似文献   

16.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

17.
鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。  相似文献   

18.
In many unicellular organisms, invertebrates, and plants, synonymous codon usage biases result from a coadaptation between codon usage and tRNAs abundance to optimize the efficiency of protein synthesis. However, it remains unclear whether natural selection acts at the level of the speed or the accuracy of mRNAs translation. Here we show that codon usage can improve the fidelity of protein synthesis in multicellular species. As predicted by the model of selection for translational accuracy, we find that the frequency of codons optimal for translation is significantly higher at codons encoding for conserved amino acids than at codons encoding for nonconserved amino acids in 548 genes compared between Caenorhabditis elegans and Homo sapiens. Although this model predicts that codon bias correlates positively with gene length, a negative correlation between codon bias and gene length has been observed in eukaryotes. This suggests that selection for fidelity of protein synthesis is not the main factor responsible for codon biases. The relationship between codon bias and gene length remains unexplained. Exploring the differences in gene expression process in eukaryotes and prokaryotes should provide new insights to understand this key question of codon usage. Received: 18 June 2000 / Accepted: 10 November 2000  相似文献   

19.
Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed) ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome—between 5% and 33%, depending on genome size—while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl–tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an “adaptome” by highlighting gene functions with expression levels elevated specifically in thermophilic Bacteria and Archaea.  相似文献   

20.
The genetic code is degenerate—most amino acids can be encoded by from two to as many as six different codons. The synonymous codons are not used with equal frequency: not only are some codons favored over others, but also their usage can vary significantly from species to species and between different genes in the same organism. Known causes of codon bias include differences in mutation rates as well as selection pressure related to the expression level of a gene, but the standard analysis methods can account for only a fraction of the observed codon usage variation. We here introduce an explicit model of codon usage bias, inspired by statistical physics. Combining this model with a maximum likelihood approach, we are able to clearly identify different sources of bias in various genomes. We have applied the algorithm to Saccharomyces cerevisiae as well as 325 prokaryote genomes, and in most cases our model explains essentially all observed variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号