首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.  相似文献   

2.

Background

Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver.

Methodology

Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 −/−).

Principal Findings

In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 −/− mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 −/− mice.

Conclusion/Significance

These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.  相似文献   

3.
Xu  Jianwen  Gong  Yafan  Sun  Yue  Cai  Jingzeng  Liu  Qi  Bao  Jun  Yang  Jie  Zhang  Ziwei 《Biological trace element research》2020,194(1):237-243
Biological Trace Element Research - Although it has been reported that selenium (Se) deficiency can trigger inflammation, however, there are few reports on the effect of Se on the function of mouse...  相似文献   

4.
Diabetic nephropathy is both a common and a severe complication of diabetes mellitus. Iron is an essential trace element. However, excess iron is toxic, playing a role in the pathogenesis of diabetic nephropathy. The present study aimed to determine the extent of the interaction between iron and type 2 diabetes in the kidney. Male rats were randomly assigned into four groups: control, iron (300-mg/kg iron dextran), diabetes (a single dose of intraperitoneal streptozotocin), and iron + diabetes group. Iron supplementation resulted in a higher liver iron content, and diabetic rats showed higher serum glucose compared with control rats, which confirmed the model as iron overload and diabetic. It was found that iron + diabetes group showed a greater degree of kidney pathological changes, a remarkable reduction in body weight, and a significant increase in relative kidney weight and iron accumulation in rat kidneys compared with iron or diabetes group. Moreover, malondialdehyde values in the kidney were higher in iron + diabetes group than in iron or diabetes group, sulfhydryl concentration and glutathione peroxidase activity were decreased by the diabetes and iron + diabetes groups, and protein oxidation and nitration levels were higher in the kidney of iron + diabetes group as compared to iron or diabetes group. However, iron supplementation did not elevate the glucose level of a diabetic further. These results suggested that iron increased the diabetic renal injury probably through increased oxidative/nitrative stress and reduced antioxidant capacity instead of promoting a rise in blood sugar levels; iron might be a potential cofactor of diabetic nephropathy, and strict control of iron would be important under diabetic state.  相似文献   

5.

Background

Recent studies showed a link between a high fat diet (HFD)-induced obesity and lipid accumulation in non-adipose tissues, such as skeletal muscle and liver, and insulin resistance (IR). Although the mechanisms responsible for IR in those tissues are different, oxidative stress and mitochondrial dysfunction have been implicated in the disease process. We tested the hypothesis that HFD induced mitochondrial DNA (mtDNA) damage and that this damage is associated with mitochondrial dysfunction, oxidative stress, and induction of markers of endoplasmic reticulum (ER) stress, protein degradation and apoptosis in skeletal muscle and liver in a mouse model of obesity-induced IR.

Methodology/Principal Findings

C57BL/6J male mice were fed either a HFD (60% fat) or normal chow (NC) (10% fat) for 16 weeks. We found that HFD-induced IR correlated with increased mtDNA damage, mitochondrial dysfunction and markers of oxidative stress in skeletal muscle and liver. Also, a HFD causes a change in the expression level of DNA repair enzymes in both nuclei and mitochondria in skeletal muscle and liver. Furthermore, a HFD leads to activation of ER stress, protein degradation and apoptosis in skeletal muscle and liver, and significantly reduced the content of two major proteins involved in insulin signaling, Akt and IRS-1 in skeletal muscle, and Akt in liver. Basal p-Akt level was not significantly influenced by HFD feeding in skeletal muscle and liver.

Conclusions/Significance

This study provides new evidence that HFD-induced mtDNA damage correlates with mitochondrial dysfunction and increased oxidative stress in skeletal muscle and liver, which is associated with the induction of markers of ER stress, protein degradation and apoptosis.  相似文献   

6.
CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance.  相似文献   

7.
8.
Liu  Jiankang  Mori  Akitane 《Neurochemical research》1999,24(11):1479-1497
Stress may contribute to aging acceleration and age-related degenerative diseases. Stress and adaptation to stress require numerous homeostatic adjustments including hormones, neurotransmitters, oxidants, and other mediators. The stress-induced hormones, neurotransmitters, and oxidants all have beneficial, but also harmful effects if out of balance. Therefore, the homeostasis of stress and adaptation should be governed by the hormone balance, neurotransmitter balance, and oxidant balance, as well as the interactions among these substances. The imbalance and the over-interaction of these balances may ultimately cause increased oxidant generation and oxidative damage to biomolecules. This increased oxidative damage may add to the oxidant burden associated with normal aerobic metabolism, which in itself, generates oxidants, causes accumulation of oxidative damage in mitochondria, and contributes to normal aging. Therefore, the stress-associated increase of oxidative damage may, in part, contribute to stress-associated aging acceleration and age-related neurodegenerative diseases.  相似文献   

9.
10.
11.
IntroductionAnesthesia induces insulin resistance, which may contribute to elevated blood glucose and adverse post-operative outcomes in critically ill patients, and impair glycemic control in surgical patients with diabetes. However, little is known about the mechanisms by which anesthesia impairs insulin sensitivity. Here we investigate the effects of anesthesia on insulin sensitivity in metabolic tissues.MethodsHyperinsulinemic-euglycemic clamps were performed in 32 lean (control diet; n = 16 conscious versus n = 16 anesthetized) and 24 fat-fed (6 weeks fat-feeding; n = 16 conscious versus n = 8 anesthetized) adult male mongrel dogs in conjunction with tracer methodology to differentiate hepatic versus peripheral insulin sensitivity. Propofol was administered as an intravenous bolus (3mg/kg) to initiate anesthesia, which was then maintained with inhaled sevoflurane or isoflurane (2–3%) for the duration of the procedure.ResultsAnesthesia reduced peripheral insulin sensitivity by approximately 50% in both lean and fat-fed animals as compared to conscious animals, and insulin action at the liver was almost completely suppressed during anesthesia such that hepatic insulin sensitivity was decreased by 75.5% and; 116.2% in lean and fat-fed groups, respectively.ConclusionInhaled anesthesia induces severe hepatic insulin resistance in a canine model. Countermeasures that preserve hepatic insulin sensitivity may represent a therapeutic target that could improve surgical outcomes in both diabetic and healthy patients.  相似文献   

12.
The postprandial state seems to have a direct influence on oxidative status and insulin resistance. We determined the effect of an increase in plasma triglycerides after a high‐fat meal on oxidative stress in severely obese patients with differing degrees of insulin resistance. The study was undertaken in 60 severely obese persons who received a 60‐g fat overload with a commercial preparation. Measurements were made of insulin resistance, the plasma activity of various antioxidant enzymes, the total antioxidant capacity (TAC) and the plasma concentration of thiobarbituric acid reactive substances (TBARS). The patients with greater insulin resistance had a lower plasma superoxide dismutase (SOD) activity (P < 0.05) and a greater glutathione peroxidase (GSH‐Px) activity (P < 0.05). The high‐fat meal caused a significant reduction in SOD activity and an increase in the plasma concentration of TBARS in all the patients. Only the patients with lower insulin resistance experienced a significant increase in plasma catalase activity (2.22 ± 1.02 vs. 2.93 ± 1.22 nmol/min/ml, P < 0.01), remaining stable in the patients with greater insulin resistance. These latter patients had a reduction in plasma TAC (6.92 ± 1.93 vs. 6.29 ± 1.80 mmol/l, P < 0.01). In conclusion, our results show a close association between the degree of insulin resistance and markers of oxidative stress, both before and after a high‐fat meal. The postprandial state causes an important increase in oxidative stress, especially in severely obese persons with greater insulin resistance. However, we are unable to determine from this study whether there is first an increase in oxidative stress or in insulin resistance.  相似文献   

13.
Hepatic steatosis is the accumulation of excess fat in the liver. Recently, hepatic steatosis has become more important because it occurs in the patients with obesity, type 2 diabetes, and hyperlipidemia and is associated with endoplasmic reticulum (ER) stress and insulin resistance. C-C chemokine receptor 2 (CCR2) inhibitor has been reported to improve inflammation and glucose intolerance in diabetes, but its mechanisms remained unknown in hepatic steatosis. We examined whether CCR2 inhibitor improves ER stress-induced hepatic steatosis in type 2 diabetic mice. In this study, db/db and db/m (n = 9) mice were fed CCR2 inhibitor (2 mg/kg/day) for 9 weeks. In diabetic mice, CCR2 inhibitor decreased plasma and hepatic triglycerides levels and improved insulin sensitivity. Moreover, CCR2 inhibitor treatment decreased ER stress markers (e.g., BiP, ATF4, CHOP, and XBP-1) and inflammatory cytokines (e.g., TNFα, IL-6, and MCP-1) while increasing markers of mitochondrial biogenesis (e.g., PGC-1α, Tfam, and COX1) in the liver. We suggest that CCR2 inhibitor may ameliorate hepatic steatosis by reducing ER stress and inflammation in type 2 diabetes mellitus.  相似文献   

14.

Background

Though cardiovascular (CV) risks are reported in first-degree relatives (FDR) of type 2 diabetics, the pathophysiological mechanisms contributing to these risks are not known. We investigated the association of sympathovagal imbalance (SVI) with CV risks in these subjects.

Subjects and Methods

Body mass index (BMI), basal heart rate (BHR), blood pressure (BP), rate-pressure product (RPP), spectral indices of heart rate variability (HRV), autonomic function tests, insulin resistance (HOMA-IR), lipid profile, inflammatory markers, oxidative stress (OS) marker, rennin, thyroid profile and serum electrolytes were measured and analyzed in subjects of study group (FDR of type 2 diabetics, n = 72) and control group (subjects with no family history of diabetes, n = 104).

Results

BMI, BP, BHR, HOMA-IR, lipid profile, inflammatory and OS markers, renin, LF-HF (ratio of low-frequency to high-frequency power of HRV, a sensitive marker of SVI) were significantly increased (p<0.0001) in study group compared to the control group. SVI in study group was due to concomitant sympathetic activation and vagal inhibition. There was significant correlation and independent contribution of markers of insulin resistance, dyslipidemia, inflammation and OS to LF-HF ratio. Multiple-regression analysis demonstrated an independent contribution of LF-HF ratio to prehypertension status (standardized beta 0.415, p<0.001) and bivariate logistic-regression showed significant prediction (OR 2.40, CI 1.128–5.326, p = 0.002) of LF-HF ratio of HRV to increased RPP, the marker of CV risk, in study group.

Conclusion

SVI in FDR of type 2 diabetics occurs due to sympathetic activation and vagal withdrawal. The SVI contributes to prehypertension status and CV risks caused by insulin resistance, dyslipidemia, inflammation and oxidative stress in FDR of type 2 diabetics.  相似文献   

15.
Metabolic syndrome (MS) represents a cluster of physiological and anthropometric abnormalities. The purpose of this study was to investigate the relationships between the levels of inflammation, adiponectin, and oxidative stress in subjects with MS. The inclusion criteria for MS, according to the Taiwan Bureau of Health Promotion, Department of Health, were applied to the case group (n = 72). The control group (n = 105) comprised healthy individuals with normal blood biochemical values. The levels of inflammatory markers [high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6), adiponectin, an oxidative stress marker (malondialdehyde), and antioxidant enzymes activities [catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)] were measured. Subjects with MS had significantly higher concentrations of inflammatory markers and lower adiponectin level, and lower antioxidant enzymes activities than the control subjects. The levels of inflammatory markers and adiponectin were significantly correlated with the components of MS. The level of hs-CRP was significantly correlated with the oxidative stress marker. The IL-6 level was significantly correlated with the SOD and GPx activities, and the adiponectin level was significantly correlated with the GPx activity. A higher level of hs-CRP (≥1.00 mg/L), or IL-6 (≥1.50 pg/mL) or a lower level of adiponectin (<7.90 µg/mL) were associated with a significantly greater risk of MS. In conclusion, subjects suffering from MS may have a higher inflammation status and a higher level of oxidative stress. A higher inflammation status was significantly correlated with decreases in the levels of antioxidant enzymes and adiponectin and an increase in the risk of MS.  相似文献   

16.
肝脂肪变性是长期饮酒、肥胖、药物中毒等致脂肪肝形成过程中重要的中间阶段,严 重的脂肪堆积会导致肝细胞坏死或肝硬化,但是有关肝脂肪变性的分子机理目前仍不十分清 楚.本实验利用四氯化碳建立大鼠肝脂肪变性模型,四氯化碳处理组较对照组肝脏丙二醛含 量增加68%,内质网应激标志蛋白GRP78 mRNA水平和蛋白质水平表达均明显增加;人肝癌细胞株HepG2体外培养中,加入四氯化碳处理后内质网发生应激,并导致SREBP-1表达增加且活化.结果表明,四氯化碳导致的肝脂肪变性与肝细胞的氧化损伤和内质网应激有关,其分子机理可能为内质网应激发生后促进SREBP-1转录因子的表达与活化,SREBP-1在细胞核内参与生脂相关酶如HMG CoA 还原酶等基因的诱导表达,生脂相关酶含量的增加进一步使肝细胞甘油三酯、胆固醇合成增加,脂质的异常堆积导致了肝脂肪变性的发生.  相似文献   

17.
18.
19.
Circadian rhythms are intrinsic rhythms that are coordinated with the rotation of the Earth and are also generated by a set of circadian-clock genes at the intracellular level. Growing evidence suggests a strong link between circadian rhythms and energy metabolism; however, the fundamental mechanisms remain unclear. In the present study, neonatal streptozotocin (STZ)-treated mice were used to model the molecular and physiological progress from insulin resistance to diabetes. Two-day-old male C57BL/6 mice received a single injection of STZ and were tested for non-obese, hyperglycemic and hyperinsulinemic conditions in the early stage, insulin resistance in the middle stage, and diabetes in the late stage. Gene expression levels of the hepatic circadian-clock system were examined by real-time quantitative PCR. Most of the components of the hepatic circadian-clock gene expression system, such as the mRNAs of Bmal1 (brain and muscle Arnt-like protein-1), Per2 (period 2) and Cry1 (cryptochrome 1), were elevated, and circadian patterns were retained in the early and middle stages of insulin-resistant conditions. The insulin sensitizer, rosiglitazone, returns the physiological and molecular changes associated with the diabetic phenotype to normal levels through peroxisome proliferator-activated receptor γ (PPARγ) rather than PPARα. Early and chronic treatment with rosiglitazone has been shown to be effective to counter the diabetic condition. Over time, this effect acts to attenuate the increased gene expression levels of the hepatic circadian-clock system and delay the severity of diabetic conditions. Together, these results support an essential role for the hepatic circadian-clock system in the coordinated regulation and/or response of metabolic pathways.  相似文献   

20.
Epidemiological, clinical, and experimental animal studies suggest a strong correlation between insulin resistance and Alzheimer’s disease. In fact, type-2 diabetes is considered an important risk factor of developing Alzheimer’s disease. In addition, impaired insulin signaling in the Alzheimer’s disease brain may promote Aβ production, impair Aβ clearance and induce tau hyperphosphorylation, thereby leading to deterioration of the disease. The pathological prion protein, PrPSc, deposits in the form of extracellular aggregates and leads to dementia, raising the question as to whether prion pathogenesis may also be affected by insulin resistance. We therefore established high-fat diet-induced insulin resistance in tga20 mice, which overexpress the prion protein. We then inoculated the insulin-resistant mice with prions. We found that insulin resistance in tga20 mice did not affect prion disease progression, PrPSc deposition, astrogliosis or microglial activation, and had no effect on survival. Our study demonstrates that in a mouse model, insulin resistance does not significantly contribute to prion pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号