首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The coral reef fish community of Hawaii is composed of hundreds of species, supports a multimillion dollar fishing and tourism industry, and is of great cultural importance to the local population. However, a major stock assessment of Hawaiian coral reef fish populations has not yet been conducted. Here we used the robust indicator variable “average length in the exploited phase of the population (L¯)”, estimated from size composition data from commercial fisheries trip reports and fishery-independent diver surveys, to evaluate exploitation rates for 19 Hawaiian reef fishes. By and large, the average lengths obtained from diver surveys agreed well with those from commercial data. We used the estimated exploitation rates coupled with life history parameters synthesized from the literature to parameterize a numerical population model and generate stock sustainability metrics such as spawning potential ratios (SPR). We found good agreement between predicted average lengths in an unfished population (from our population model) and those observed from diver surveys in the largely unexploited Northwestern Hawaiian Islands. Of 19 exploited reef fish species assessed in the main Hawaiian Islands, 9 had SPRs close to or below the 30% overfishing threshold. In general, longer-lived species such as surgeonfishes, the redlip parrotfish (Scarus rubroviolaceus), and the gray snapper (Aprion virescens) had the lowest SPRs, while short-lived species such as goatfishes and jacks, as well as two invasive species (Lutjanus kasmira and Cephalopholis argus), had SPRs above the 30% threshold.  相似文献   

2.
BAITED UNDERWATER VIDEO TECHNIQUES ARE INCREASINGLY BEING UTILISED FOR ASSESSING AND MONITORING DEMERSAL FISHES BECAUSE THEY ARE: 1) non extractive, 2) can be used to sample across multiple habitats and depths, 3) are cost effective, 4) sample a broader range of species than many other techniques, 5) and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control)) from sites inside and outside a targeted fishery closure (TFC). In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001), while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.  相似文献   

3.
This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is an increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by up to 17% at a concentration of 30?µg l?1 based on the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300?µg l?1 and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment.  相似文献   

4.
Artificial reefs continue to be added as habitat throughout the world, yet questions remain about how reef design affects fish diversity and abundance. In the present study, the effects of reef density were assessed for fish communities and sizes of economically valuable Lutjanus campechanus 13 km off Port Mansfield, Texas, at a reef composed of more than 4000 concrete culverts. The study spanned from May to June in 2013 and 2014, and sites sampled included natural reefs, bare areas, and varying culvert patch density categories, ranging from 1–190 culverts. Abundances of adults and species evenness of juvenile populations differed between the years. Fish communities did not significantly differ among density categories; however, highest species richness and total abundances were observed at intermediate culvert densities and at natural reefs. Whereas the abundance of L. campechanus did not differ among density categories, mean total lengths of L. campechanus were greatest at the lower density. Our findings suggest that reefs should be deployed with intermediate patch density of 71–120 culverts in a 30-m radius to yield the highest fish abundances.  相似文献   

5.
Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.  相似文献   

6.
The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC), deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.  相似文献   

7.
8.
Synopsis Many recognised species of coral reef fishes exhibit two or more colour variants, but it is unknown whether these represent genetically identical phenotypes, genetic polymorphisms or closely related species. We tested between these alternatives for two colour morphs of the coral reef fish, Pseudochromis fuscus, from Lizard Island (Great Barrier Reef). A molecular analysis using mtDNA did not detect any genetic differentiation between co-occurring ‘yellow’ and ‘brown’ colour morphs. A previous study proposed that these two colour morphs are aggressive mimics of yellow and brown damselfishes. Here, a manipulative field experiment was used to evaluate whether the colour dimorphism in P. fuscus is a phenotypic response to the presence of two different model species. Colonies of either yellow or brown damselfish species were established on different patch reefs, and each of the two different P. fuscus morphs was then placed on the different reefs. Contrary to expectations, all yellow individuals that stayed on the reefs changed to brown, regardless of the model species. No brown individuals changed to the yellow colouration. However, P. fuscus were more likely to emigrate from, or suffer higher mortality on, patch reefs where they were not matched with similarly coloured models. Clearly, yellow and brown P. fuscus are members of a single species with sufficient phenotypic plasticity to switch from yellow to brown colouration.  相似文献   

9.
Predators are important for regulating adult sea urchin densities. Here, we employ remote underwater video cameras to record diurnal predation on tethered sea urchins at Lizard Island on the Great Barrier Reef (GBR). We identified four fish predators of adult sea urchins (Balistoides viridescens, Balistapus undulatus, Lethrinus atkinsoni and Choerodon schoenleinii). Predator activity appeared to be site-specific. Balistoides viridescens and B. undulatus (f: Balistidae) were the two most important predators of Echinometra mathaei with the former handling E. mathaei significantly faster (mean 0.7?min) than B. undulatus (5.2?min). Balistoides viridescens also successfully preyed on 70?% of detections, while C. schoenleinii, B. undulatus and L. atkinsoni preyed on just 33, 17 and <1?%, respectively. Additionally, B. viridescens were behaviourally dominant among predator species and were observed as aggressors in 30 encounters with B. undulatus and 8 encounters with L. atkinsoni. In only one encounter was B. viridescens the recipient of any aggression (from B. undulatus). In terms of relative vulnerability, of the three sea urchin species examined, E. mathaei were more vulnerable to predation than Diadema setosum or Echinothrix calamaris, with mean handling times of 1.2, 4.8 and 10.3?min, respectively. Balistoides viridescens and B. undulatus both appear to be able to play an important role as predators of sea urchins on the relatively intact coral reefs of Lizard Island. However, B. viridescens emerge as the most efficient predator in terms of handling speed and the proportion of detections preyed upon. They were also the behaviourally dominant predator. This preliminary study of the predators of sea urchins on the GBR highlights the potential significance of relatively scarce but functionally important species.  相似文献   

10.
Literature reporting the development of conservation tillage and the research that has been conducted on nematode control in crops grown in conservation tillage systems is reviewed. Effects of different types of conservation tillage on population densities of various nematode species in monocropping and multicropping systems, effects of tillage on nematode distribution in the soil profile, effects of conservation tillage on nematode control, and the role of nematology in conservation tillage research are discussed.  相似文献   

11.
Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.  相似文献   

12.
Quantification of Loss and Change in Floridian Reef Coral Populations   总被引:4,自引:0,他引:4  
Six coral reef locations between Miami and Key West were markedwith stainless steel stakes and rephotographed periodicallybetween 1984 and 1991. The monitored areas included two photostationsin the Looe Key National Marine Sanctuary, two photostationsin the Key Largo National Marine Sanctuary, and two photostationsin the Biscayne National Park. Stations were monitored for speciesnumber, percent cover, and species diversity of the scleractinianand hydrozoan stony corals. Monitoring began in 1984 for photostationsin the National Marine Sanctuaries and in 1989 for stationsin the National Park. All six areas lost coral species between the initial surveyyear and 1991. Survey areas lost between one and four species;these losses constituted between 13% and 29% of their speciesrichness. Five of the six areas lost live coral cover. Basedupon photographs taken repeatedly at these locations, net lossesranged between 7.3% and 43.9%. In the one station showing anincrease in coral cover, the increase was only for the canopybranches of Acropora palmata; understory branches of this samespecies lost surface area at the same rate as canopy branchesgained area. For most of the common species, there was a reductionin the total number of living colonies in the community, anda diminution in the number of large, mature colonies. Throughoutthe study period, there was no recruitment to any of the photostationsby any of the massive frame building coral species. Mortality of this magnitude is often associated with hurricanedamage, but in this survey the losses occurred during a periodwithout catastrophic storms. Sources of mortality identifiablein the photographs include (1) black band disease and (2) "bleaching"other potential sources of mortality are also considered. Weconclude, for our survey areas, that loss rates of this magnitudecannot be sustained for protracted periods if the coral communityis to persist in a configuration resembling historical coralreef community structure in the Florida Keys.  相似文献   

13.
Reversed Sex-Change in the Protogynous Reef Fish Labroides dimidiatus   总被引:1,自引:0,他引:1  
Protogynous hermaphroditism, or female-to-male sex change, is known for many reef fishes including wrasses (family Labridae) in which large males monopolize mating. When the dominant male disappears from a polygynous group, the largest female may change sex within a few weeks. Such social control of sex change was first documented in harems of the cleaner wrasse Labroides dimidiatus almost 30 yr ago. To examine whether change of social status would induce males of L. dimidiatus to perform reversed sex-change, we conducted experiments: (i) releasing single males near lone males whose mates have been removed in the field; and (ii) keeping two males in a tank. Smaller males changed back to females when they became subordinate: it took 53–77 d (n=3) for them to complete gonadal sex change and release eggs in the aquarium. The male–male pairs performed spawning behavior, with the smaller male in the female role already 5–58 d before completion of gonadal sex change. This is the first report of reversed sex-change among protogynous wrasses. Moreover, we conducted another experiment, keeping a pair of a male and a larger female in a tank (n=1). We found sex change by both mates, which has not been reported from any fishes. Thus, the sex of L. dimidiatus is strictly determined by social status whenever it changes after mate loss.  相似文献   

14.
SYNOPSIS. For reef fish in temperate marine regions, such componentsof local assemblage diversity (i.e., within a reef) as speciesrichness, total fish density, and rank order of abundance canremain relatively constantthrough time. Long-term data (17 years)for assemblages on 2 reefs in Southern California revealed that,despite high turnover in rare species, overall species richnesswas affected only moderately by major oceanographicdisturbances.This resilience of the assemblage is in marked contrast to hightemporal variation in densities exhibited by many local populationsof individual species, and it suggests that measurements ofdiversity to indicate status of an assemblage should be usedwith caution. Here we consider various processes and factors,together with the spatial and temporal scales over which theyoperate, that can influence local diversity (and its estimation)of reef fishes. Mechanisms that can "buffer" local diversityof reef fishes include dispersal of young that inter-connectssubpopulations, high "inertia" in relative abundance and populationstructures (especially for long-lived species), and broad ecologicalrequirements of many species. These considerations suggest thatthe effect of disturbances on local diversity of reef fisheswill depend in part on the magnitude, duration, frequency andspatial scale of the perturbation. While long-term data arefew, available information suggests that, due to life historycharacteristics of the fish and the spatial and temporal scalesat which disturbances are likely to occur, assemblages of temperatemarine reef fish might be relatively resilient to environmentalperturbations  相似文献   

15.
The U.S. Bureau of Reclamation created a shallow, 110-m channel to provide habitat for two endangered fishes, Cyprinodon elegans (Comanche Springs pupfish) and Gambusia nobilis (Pecos gambusia), at the site of the fishes' former natural habitat. The ciénega (marsh) associated with Phantom Lake Spring in Jeff Davis County, Texas, was destroyed by the creation of an irrigation canal system. In 1993, the endangered fishes were stocked into the refuge with individuals from the irrigation canals, and in the case of C. elegans, hatchery stocks. The condition of habitat, status of fish populations, and fish ecology within the refuge were then monitored for two years. The abundance and density of both species increased in accordance with aquatic plant development. Cyprinodon elegans abundance peaked after one year and stabilized at an average density of 14.7/m2 by the end of our study. Juvenile C. elegans were always rare, which may indicate that the population reached the refuge's carrying capacity and that recruitment is low. Gambusia nobilis was the most abundant fish in the refuge (average density 96/m2), used the entire refuge, and outcom-peted nonindigenous G. geiseri. The two Gambusia species used similar habitats but showed almost no dietary overlap. High densities of aquatic plants reduced the amount of open water areas necessary for C. elegans. The refuge will sustain the two endangered fishes at this historic site of endemism while maintaining flow to the irrigation system; however, the refuge is not equivalent to a restored ciénega.  相似文献   

16.
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated.  相似文献   

17.
18.
19.
The theory of behavioral syndromes focuses on quantifying variation in behavior within and among individual organisms and attempts to account for the maintenance of differences in behavior that occur in a consistent manner among individuals. Behavioral syndromes have potentially important ecological consequences (e.g. survivorship tradeoffs) and can be shaped by population dynamics through selective mortality. Here, we search for any evidence for consistency of behavior across situations in juveniles of a common damselfish, Pomacentrus amboinensis (Pomacentridae) at the transition between larval habitats in the plankton and juvenile habitats on the reef. Naïve fish leaving the pelagic phase to settle on reefs were caught by light traps and their behaviors observed using similar methods across three different situations (small aquaria, large aquaria, field setting); all of which represent low risk and well-sheltered environments. Seven behavioral traits were compared within and among individuals across situations to determine if consistent behavioral syndromes existed. No consistency was found in any single or combination of behavioral traits for individuals across all situations. We suggest that high behavioral flexibility is likely beneficial for newly-settled fish at this ontogenetic transition and it is possible that consistent behavioral syndromes are unlikely to emerge in juveniles until environmental experience is gained or certain combinations of behaviors are favored by selective mortality.  相似文献   

20.
Several previous studies have attempted to correlate habitat complexity and reef fish species diversity. These studies have mostly examined natural reef systems, but results differed. To examine this relation, we built 1 m2 habitats with 20 replicates of five complexity levels from July to August 2001 in the northeastern Gulf of Mexico (n=100). In June and July 2002, we built new habitats using the 2001 design, but also added a sixth complexity level (n=120). In order of increasing complexity these included: cage, shell, cage-shell, block-shell, cage-block-shell, and shell-block-pyramid habitats. Most fish in both years were juveniles and included species common to reef structures in the northeastern Gulf of Mexico. In 2001, we identified 26 fish species, and the dominant species was red snapper, Lutjanus campechanus (41%), followed by rock sea bass, Centropristis philadelphica (23%), and sand perch, Diplectrum spp. (14%). In 2002 we identified 36 species, and the dominant species was tomtate, Haemulon aurolineatum (36%), followed by Diplectrum spp. (19%), and L. campechanus (13%). In 2001, species diversity and richness were significantly (P<0.05) higher on more complex habitats (H′=1.7, S=11–12) compared to less complex habitats (H′=0.8–1.0, S=4–9). In 2002, patterns among diversity, richness and reef complexity were less apparent with only the least complex habitats shell and cage showing significantly lower values. In both years, multidimensional scaling grouped by complexity levels with cage and shell habitats showing the clearest separation from other habitat types. Also, with few exceptions (only 8%) analysis of similarities showed significant (P<0.05) differences in fish communities across complexity levels. Although community composition varied between years, this study provided evidence to support the hypothesis that habitat complexity increased reef fish species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号