首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby) and non-reference based compression (DSRC, BAM) and other recently published competition entries (Quip, SCALCE). The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.  相似文献   

2.
Recent advances in sequencing technologies provide the means for identifying copy number variation (CNV) at an unprecedented resolution. A single next-generation sequencing experiment offers several features that can be used to detect CNV, yet current methods do not incorporate all available signatures into a unified model. cnvHiTSeq is an integrative probabilistic method for CNV discovery and genotyping that jointly analyzes multiple features at the population level. By combining evidence from complementary sources, cnvHiTSeq achieves high genotyping accuracy and a substantial improvement in CNV detection sensitivity over existing methods, while maintaining a low false discovery rate. cnvHiTSeq is available at http://sourceforge.net/projects/cnvhitseq  相似文献   

3.
4.
The big data storage is a challenge in a post genome era. Hence, there is a need for high performance computing solutions for managing large genomic data. Therefore, it is of interest to describe a parallel-computing approach using message-passing library for distributing the different compression stages in clusters. The genomic compression helps to reduce the on disk“foot print” of large data volumes of sequences. This supports the computational infrastructure for a more efficient archiving. The approach was shown to find utility in 21 Eukaryotic genomes using stratified sampling in this report. The method achieves an average of 6-fold disk space reduction with three times better compression time than COMRAD.

Availability

The source codes are written in C using message passing libraries and are available at https:// sourceforge.net/ projects/ comradmpi/files / COMRADMPI/  相似文献   

5.
The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs) in the cargo proteins, and modulates nuclear–cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS). Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.
This is a PLOS Computational Biology Software Article
  相似文献   

6.
7.
Tumour cellularity, the relative proportion of tumour and normal cells in a sample, affects the sensitivity of mutation detection, copy number analysis, cancer gene expression and methylation profiling. Tumour cellularity is traditionally estimated by pathological review of sectioned specimens; however this method is both subjective and prone to error due to heterogeneity within lesions and cellularity differences between the sample viewed during pathological review and tissue used for research purposes. In this paper we describe a statistical model to estimate tumour cellularity from SNP array profiles of paired tumour and normal samples using shifts in SNP allele frequency at regions of loss of heterozygosity (LOH) in the tumour. We also provide qpure, a software implementation of the method. Our experiments showed that there is a medium correlation 0.42 (-value = 0.0001) between tumor cellularity estimated by qpure and pathology review. Interestingly there is a high correlation 0.87 (-value 2.2e-16) between cellularity estimates by qpure and deep Ion Torrent sequencing of known somatic KRAS mutations; and a weaker correlation 0.32 (-value = 0.004) between IonTorrent sequencing and pathology review. This suggests that qpure may be a more accurate predictor of tumour cellularity than pathology review. qpure can be downloaded from https://sourceforge.net/projects/qpure/.  相似文献   

8.
9.
Next-generation DNA sequencing platforms provide exciting new possibilities for in vitro genetic analysis of functional nucleic acids. However, the size of the resulting data sets presents computational and analytical challenges. We present an open-source software package that employs a locality-sensitive hashing algorithm to enumerate all unique sequences in an entire Illumina sequencing run (∼108 sequences). The algorithm results in quasilinear time processing of entire Illumina lanes (∼107 sequences) on a desktop computer in minutes. To facilitate visual analysis of sequencing data, the software produces three-dimensional scatter plots similar in concept to Sewall Wright and John Maynard Smith’s adaptive or fitness landscape. The software also contains functions that are particularly useful for doped selections such as mutation frequency analysis, information content calculation, multivariate statistical functions (including principal component analysis), sequence distance metrics, sequence searches and sequence comparisons across multiple Illumina data sets. Source code, executable files and links to sample data sets are available at http://www.sourceforge.net/projects/sewal.  相似文献   

10.
11.
The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in <0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/.  相似文献   

12.
We study the detection of mutations, sequencing errors, and homologous recombination events (HREs) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNPs) and break the genomes into blocks to handle the rearrangement problem. Then we apply a dynamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HREs. Results from simulation experiments show that we can detect 31%–61% of HREs and the precision of our detection is about 48%–90% depending on the rates of mutation and missing data. The HREfinder software for predicting HREs in a set of whole genomes is available as open source (http://sourceforge.net/projects/hrefinder/).  相似文献   

13.
14.
Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree'' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.  相似文献   

15.
Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures – hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.  相似文献   

16.
17.
Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rate and high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0488-x) contains supplementary material, which is available to authorized users.  相似文献   

18.
19.
20.
The presence of duplicates introduced by PCR amplification is a major issue in paired short reads from next-generation sequencing platforms. These duplicates might have a serious impact on research applications, such as scaffolding in whole-genome sequencing and discovering large-scale genome variations, and are usually removed. We present FastUniq as a fast de novo tool for removal of duplicates in paired short reads. FastUniq identifies duplicates by comparing sequences between read pairs and does not require complete genome sequences as prerequisites. FastUniq is capable of simultaneously handling reads with different lengths and results in highly efficient running time, which increases linearly at an average speed of 87 million reads per 10 minutes. FastUniq is freely available at http://sourceforge.net/projects/fastuniq/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号