首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CryoEM continues to produce density maps of larger and more complex assemblies with multiple protein components of mixed symmetries. Resolution is not always uniform throughout a cryoEM map, and it can be useful to estimate the resolution in specific molecular components of a large assembly. In this study, we present procedures to 1) estimate the resolution in subcomponents by gold-standard Fourier shell correlation (FSC); 2) validate modeling procedures, particularly at medium resolutions, which can include loop modeling and flexible fitting; and 3) build probabilistic models that combine high-accuracy priors (such as crystallographic structures) with medium-resolution cryoEM densities. As an example, we apply these methods to new cryoEM maps of the mature bacteriophage P22, reconstructed without imposing icosahedral symmetry. Resolution estimates based on gold-standard FSC show the highest resolution in the coat region (7.6 Å), whereas other components are at slightly lower resolutions: portal (9.2 Å), hub (8.5 Å), tailspike (10.9 Å), and needle (10.5 Å). These differences are indicative of inherent structural heterogeneity and/or reconstruction accuracy in different subcomponents of the map. Probabilistic models for these subcomponents provide new insights, to our knowledge, and structural information when taking into account uncertainty given the limitations of the observed density.  相似文献   

2.
Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling.  相似文献   

3.
A theory of elastic normal modes is described for the exploration of global distortions of biological structures and their assemblies based upon low-resolution image data. Structural information at low resolution, e.g. from density maps measured by cryogenic electron microscopy (cryo-EM), is used to construct discrete multi-resolution models for the electron density using the techniques of vector quantization. The elastic normal modes computed based on these discretized low-resolution models are found to compare well with the normal modes obtained at atomic resolution. The quality of the normal modes describing global displacements of the molecular system is found to depend on the resolution of the synthetic EM data and the extent of reductionism in the discretized representation. However, models that reproduce the functional rearrangements of our test set of molecules are achieved for realistic values of experimental resolution. Thus large conformational changes as occur during the functioning of biological macromolecules and assemblies can be elucidated directly from low-resolution structural data through the application of elastic normal mode theory and vector quantization.  相似文献   

4.
Vaults are the largest known cytoplasmic ribonucleoprotein structures and may function in innate immunity. The vault shell self-assembles from 96 copies of major vault protein and encapsulates two other proteins and a small RNA. We crystallized rat liver vaults and several recombinant vaults, all among the largest non-icosahedral particles to have been crystallized. The best crystals thus far were formed from empty vaults built from a cysteine-tag construct of major vault protein (termed cpMVP vaults), diffracting to about 9-Å resolution. The asymmetric unit contains a half vault of molecular mass 4.65 MDa. X-ray phasing was initiated by molecular replacement, using density from cryo-electron microscopy (cryo-EM). Phases were improved by density modification, including concentric 24- and 48-fold rotational symmetry averaging. From this, the continuous cryo-EM electron density separated into domain-like blocks. A draft atomic model of cpMVP was fit to this improved density from 15 domain models. Three domains were adapted from a nuclear magnetic resonance substructure. Nine domain models originated in ab initio tertiary structure prediction. Three C-terminal domains were built by fitting poly-alanine to the electron density. Locations of loops in this model provide sites to test vault functions and to exploit vaults as nanocapsules.  相似文献   

5.
Recent progress in cryo-EM research has ignited a revolution in biological macromolecule structure determination. Resolution is an essential parameter for quality assessment of a cryo-EM density map, and it is known that resolution varies in different regions of a map. Currently available methods for local resolution estimation require manual adjustment of parameters and in some cases necessitate acquisition or de novo generation of so-called “half maps”. Here, we developed CryoRes, a deep-learning algorithm to estimate local resolution directly from a single final cryo-EM density map, specifically by learning resolution-aware patterns of density map voxels through supervised training on a large dataset comprising 1,174 experimental cryo-EM density maps. CryoRes significantly outperforms all of the state-of-the-art competing resolution estimation methods, achieving an average RMSE of 2.26 Å for local resolution estimation relative to the currently most reliable FSC-based method blocres, yet requiring only the single final map as input. Further, CryoRes is able to generate a molecular mask for each map, with accuracy 12.12% higher than the masks generated by ResMap. CryoRes is ultra-fast, fully automatic, parameter-free, applicable to cryo-EM subtomogram data, and freely available at https://cryores.zhanglab.net.  相似文献   

6.
Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.  相似文献   

7.
Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 ?), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure.  相似文献   

8.
Baker ML  Zhang J  Ludtke SJ  Chiu W 《Nature protocols》2010,5(10):1697-1708
With single-particle electron cryomicroscopy (cryo-EM), it is possible to visualize large, macromolecular assemblies in near-native states. Although subnanometer resolutions have been routinely achieved for many specimens, state of the art cryo-EM has pushed to near-atomic (3.3-4.6 ?) resolutions. At these resolutions, it is now possible to construct reliable atomic models directly from the cryo-EM density map. In this study, we describe our recently developed protocols for performing the three-dimensional reconstruction and modeling of Mm-cpn, a group II chaperonin, determined to 4.3 ? resolution. This protocol, utilizing the software tools EMAN, Gorgon and Coot, can be adapted for use with nearly all specimens imaged with cryo-EM that target beyond 5 ? resolution. Additionally, the feature recognition and computational modeling tools can be applied to any near-atomic resolution density maps, including those from X-ray crystallography.  相似文献   

9.
Crystals of a tertiary complex of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase with the activators Mg2+ and CO2 have been grown. These crystals diffract strongly to 1.6 Å resolution. The spacegroup is C2221 with unit cell dimensions a = 158.6 Å, b = 158.6 Å, c = 203.4 Å. Additional local symmetry is apparent in the pattern of absences and the intensity distribution of the X-ray precession photographs. The photographs have been interpreted in terms of a molecule (consisting of eight large and eight small subunits, L8S8) with 222 symmetry and a molecular centre shifted 2 Å in the x direction from the origin of the unit cell. The asymmetric unit contains half the L8S8 molecule. The intensity distribution suggests that the molecular symmetry does not deviate far from 422. These crystals are compared with other crystalline forms of the enzyme and the implications of these results are discussed.  相似文献   

10.
The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein–DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors.  相似文献   

11.
Cryo-Electron Microscopy (cryo-EM) has emerged as a key technology to determine the structure of proteins, particularly large protein complexes and assemblies in recent years. A key challenge in cryo-EM data analysis is to automatically reconstruct accurate protein structures from cryo-EM density maps. In this review, we briefly overview various deep learning methods for building protein structures from cryo-EM density maps, analyze their impact, and discuss the challenges of preparing high-quality data sets for training deep learning models. Looking into the future, more advanced deep learning models of effectively integrating cryo-EM data with other sources of complementary data such as protein sequences and AlphaFold-predicted structures need to be developed to further advance the field.  相似文献   

12.
Calcium homeostasis modulator 1 (CALHM1) is a voltage- and Ca2+-gated ATP channel that plays an important role in neuronal signaling. However, as the previously reported CALHM structures are all in the ATP-conducting state, the gating mechanism of ATP permeation is still elusive. Here, we report cryo-EM reconstructions of two Danio rerio CALHM1 heptamers with ordered or flexible long C-terminal helices at resolutions of 3.2 Å and 2.9 Å, respectively, and one D. rerio CALHM1 octamer with flexible long C-terminal helices at a resolution of 3.5 Å. Structural analysis shows that the heptameric CALHM1s are in an ATP-nonconducting state with a central pore diameter of approximately 6.6 Å. Compared with those inside the octameric CALHM1, the N-helix inside the heptameric CALHM1 is in the “down” position to avoid steric clashing with the adjacent TM1 helix. Molecular dynamics simulations show that as the N-helix moves from the “down” position to the “up” position, the pore size of ATP molecule permeation increases significantly. Our results provide important information for elucidating the mechanism of ATP molecule permeation in the CALHM1 channel.  相似文献   

13.
X-ray scattering data are presented on solutions of wild cucumber mosaic virus and the associated “top component” particles which have little or no RNA. The radii of gyration are 112 Å and 135 Å for bottom and top component, respectively. The radial density distribution within each particle is calculated by Fourier inversion of the scattered amplitudes. The virus particle or bottom component has approximately uniform density with an outer radius of about 140 Å. The transform of the top component shows an almost hollow center extending out to 105 Å with a surrounding shell of high density about 35 Å thick. Thus the RNA would appear to occupy the region inside 105 Å and does not overlap appreciably the region occupied by protein. The virus has associated with it approximately 0.38 gm of water per gm of virus, resulting in an average electron density of 1.25 times that of water.  相似文献   

14.
The increasing power and popularity of cryo-electron microscopy (cryo-EM) in structural biology brought about the development of so-called hybrid methods, which permit the interpretation of cryo-EM density maps beyond their nominal resolution in terms of atomic models. The Cryo-EM Modeling Challenge 2010 is the first community effort to bring together developers of hybrid methods as well as cryo-EM experimentalists. Participating in the challenge, the molecular dynamics flexible fitting (MDFF) method was applied to a number of cryo-EM density maps. The results are described here with special emphasis on the use of symmetry-based restraints to improve the quality of atomic models derived from density maps of symmetric complexes; on a comparison of the stereochemical quality of atomic models resulting from different hybrid methods; and on application of MDFF to electron crystallography data.  相似文献   

15.
Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6–10 Å). While these structures provide a snapshot of the assembly and its components in well-defined functional states, the resolution limits the ability to build accurate structural models. In contrast, sequence-based modeling techniques are capable of producing relatively robust structural models for isolated proteins or domains. In this work, we developed and applied a hybrid modeling approach, utilizing cryoEM density and ab initio modeling to produce a structural model for the core domain of a herpesvirus structural protein, VP26. Specifically, this method, first tested on simulated data, utilizes the cryoEM density map as a geometrical constraint in identifying the most native-like models from a gallery of models generated by ab initio modeling. The resulting model for the core domain of VP26, based on the 8.5-Å resolution herpes simplex virus type 1 (HSV-1) capsid cryoEM structure and mutational data, exhibited a novel fold. Additionally, the core domain of VP26 appeared to have a complementary interface to the known upper-domain structure of VP5, its cognate binding partner. While this new model provides for a better understanding of the assembly and interactions of VP26 in HSV-1, the approach itself may have broader applications in modeling the components of large macromolecular assemblies.  相似文献   

16.
Cryo-EM has become an increasingly powerful technique for elucidating the structure, dynamics, and function of large flexible macromolecule assemblies that cannot be determined at atomic resolution. However, due to the relatively low resolution of cryo-EM data, a major challenge is to identify components of complexes appearing in cryo-EM maps. Here, we describe EMatch, a novel integrated approach for recognizing structural homologues of protein domains present in a 6-10 A resolution cryo-EM map and constructing a quasi-atomic structural model of their assembly. The method is highly efficient and has been successfully validated on various simulated data. The strength of the method is demonstrated by a domain assembly of an experimental cryo-EM map of native GroEL at 6 Aring resolution  相似文献   

17.
Low-angle X-ray diffraction patterns have been recorded from normal nerve and nerve swollen in glycerol solutions. The new X-ray data have a resolution of 7 Å. Direct methods of structure analysis which include deconvolution of the auto-correlation function and sampling theorem reconstructions have been used in the interpretation of the X-ray data. Phases have been assigned to the first 12 orders of diffraction from normal nerve. Fourier syntheses at a resolution of 7 Å are described and an absolute electron density scale is derived. A possible molecular interpretation of the electron density profile is given.  相似文献   

18.
Helix 38 (H38) of the large ribosomal subunit, with a length of 110 Å, reaches the small subunit through intersubunit bridge B1a. Previous cryo-EM studies revealed that the tip of H38 moves by more than 10 Å from the non-ratcheted to the ratcheted state of the ribosome while mutational studies implicated a key role of flexible H38 in attenuation of translocation and in dynamical signaling between ribosomal functional centers. We investigate a region including the elbow-shaped kink-turn (Kt-38) in the Haloarcula marismortui archaeal ribosome, and equivalently positioned elbows in three eubacterial species, located at the H38 base. We performed explicit solvent molecular dynamics simulations on the H38 elbows in all four species. They are formed by at first sight unrelated sequences resulting in diverse base interactions but built with the same overall topology, as shown by X-ray crystallography. The elbows display similar fluctuations and intrinsic flexibilities in simulations indicating that the eubacterial H38 elbows are structural and dynamical analogs of archaeal Kt-38. We suggest that this structural element plays a pivotal role in the large motions of H38 and may act as fulcrum for the abovementioned tip motion. The directional flexibility inferred from simulations correlates well with the cryo-EM results.  相似文献   

19.
20.
We report an approach for determining the structure of macromolecular assemblies by the combined application of cryo-electron microscopy (cryo-EM) and site-directed spin labeling electron paramagnetic resonance spectroscopy (EPR). This approach is illustrated for Hsp16.5, a small heat shock protein that prevents the aggregation of nonnative proteins. The structure of Hsp16.5 has been previously studied by both cryo-EM and X-ray crystallography. The crystal structure revealed a roughly spherical protein shell with dodecameric symmetry; however, residues 1-32 were found to be disordered. The cryo-EM reconstruction at 13 A resolution appeared similar to the crystal structure but with additional internal density corresponding to the N-terminal regions of the 24 subunits. In this study, a systematic application of site-directed spin labeling and EPR spectroscopy was carried out. By combining the EPR constraints from spin label accessibilities and proximities with the cryo-EM density, we obtained an atomic model for a portion of the Hsp16.5 N-terminal region in the context of the oligomeric complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号