首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axial patterning is a recurrent theme during embryonic development. To elucidate its fundamental principles, the hair follicle is an attractive model due to its easy accessibility and dispensability. Hair follicle asymmetry is evident from its angling and the localization of associated structures. However, axial patterning is not restricted to the follicle itself but also generates rotational hair shaft asymmetry which, for zigzag hairs, generates 3-4 bends that alternately point into opposite directions. Here we show by analyzing mutant and transgenic mice that WNT and ectodysplasin signaling are involved in the control of the molecular and morphological asymmetry of the follicle and the associated hair shaft, respectively. Asymmetry is affected by polarized WNT and ectodysplasin signaling in mature hair follicles. When endogenous signaling is impaired, molecular asymmetry is lost and mice no longer form zigzag hairs. Both signaling pathways affect the polarized expression of Shh which likely functions as a directional reference for hair shaft production in all follicles. We propose that this regulatory pathway also establishes follicular asymmetry during morphogenesis. Moreover, the identified molecular hierarchy offers a model for the periodic patterning of zigzag hairs mechanistically similar to mesodermal segmentation.  相似文献   

2.
WNT signaling in the control of hair growth and structure   总被引:22,自引:0,他引:22  
Characterization of the molecular pathways controlling differentiation and proliferation in mammalian hair follicles is central to our understanding of the regulation of normal hair growth, the basis of hereditary hair loss diseases, and the origin of follicle-based tumors. We demonstrate that the proto-oncogene Wnt3, which encodes a secreted paracrine signaling molecule, is expressed in developing and mature hair follicles and that its overexpression in transgenic mouse skin causes a short-hair phenotype due to altered differentiation of hair shaft precursor cells, and cyclical balding resulting from hair shaft structural defects and associated with an abnormal profile of protein expression in the hair shaft. A putative effector molecule for WNT3 signaling, the cytoplasmic protein Dishevelled 2 (DVL2), is normally present at high levels in a subset of cells in the outer root sheath and in precursor cells of the hair shaft cortex and cuticle which lie immediately adjacent to Wnt3-expressing cells. Overexpression of Dvl2 in the outer root sheath mimics the short-hair phenotype produced by overexpression of Wnt3, supporting the hypothesis that Wnt3 and Dvl2 have the potential to act in the same pathway in the regulation of hair growth. These experiments demonstrate a previously unrecognized role for WNT signaling in the control of hair growth and structure, as well as presenting the first example of a mammalian phenotype resulting from overexpression of a Dvl gene and providing an accessible in vivo system for analysis of mammalian WNT signaling pathways.  相似文献   

3.
The stress hormone cortisol (CORT) is slowly incorporated into the growing hair shaft of humans, nonhuman primates, and other mammals. We developed and validated a method for CORT extraction and analysis from rhesus monkey hair and subsequently adapted this method for use with human scalp hair. In contrast to CORT "point samples" obtained from plasma or saliva, hair CORT provides an integrated measure of hypothalamic-pituitary-adrenocortical (HPA) system activity, and thus physiological stress, during the period of hormone incorporation. Because human scalp hair grows at an average rate of 1 cm/month, CORT levels obtained from hair segments several cm in length can potentially serve as a biomarker of stress experienced over a number of months.In our method, each hair sample is first washed twice in isopropanol to remove any CORT from the outside of the hair shaft that has been deposited from sweat or sebum. After drying, the sample is ground to a fine powder to break up the hair''s protein matrix and increase the surface area for extraction. CORT from the interior of the hair shaft is extracted into methanol, the methanol is evaporated, and the extract is reconstituted in assay buffer. Extracted CORT, along with standards and quality controls, is then analyzed by means of a sensitive and specific commercially available enzyme immunoassay (EIA) kit. Readout from the EIA is converted to pg CORT per mg powdered hair weight. This method has been used in our laboratory to analyze hair CORT in humans, several species of macaque monkeys, marmosets, dogs, and polar bears. Many studies both from our lab and from other research groups have demonstrated the broad applicability of hair CORT for assessing chronic stress exposure in natural as well as laboratory settings.  相似文献   

4.
Summary In this study we examine the fine structure of mechanosensory hairs in the antennule of crayfish. The sensory hair is a stiff shaft with feather-like filaments. The hair's base is a large expansion of membrane which allows the hair shaft to deflect. The sensory transducing elements are located far from the hair, but are coupled mechanically with the hair shaft by a fine extracellular chorda. The sensory element is a type of scolopidium which consists of a scolopale cell and three sensory cells with a 9 + 0 type ciliary process.This type of scolopidium is characteristic of the chordotonal organ that has no cuticular structure on the surface of the exoskeleton. In this crustacean hair receptor, the deflection of the cuticular hair is transmitted through the chorda to the scolopidium which is a tension-sensitive transducer. The present study reveals that the mechanosensory hair of decapod crustaceans is a chordotonal organ accompanied by a cuticular hair structure. We also discuss comparative aspects of cuticular and subcuticular chordotonal organs in arthropods.  相似文献   

5.
Polarization‐resolved Raman microspectroscopy with near‐infrared laser excitation was applied to intact human hair in order to non‐invasively investigate the conformation and orientation of the polypeptide chains. By varying the orientation of the hair shaft relative to the polarization directions of the laser/analyzer, a set of four polarized Raman spectra is obtained; this allows to simultaneously determine both the secondary structure of hair proteins and the orientation of the polypeptide strands relative to the axis of the hair shaft. For the amide I band, results from a quantitative analysis of the polarized Raman spectra are compared with theoretically expected values for fibers with uniaxial symmetry. Based on the polarization behavior of the amide I band and further vibrational bands, a partial ordering of α‐helical polypeptide strands parallel to the hair shaft can be concluded. We suggest that this microspectroscopic approach may be used for human hair diagnostics by detecting structural or orientational alterations of keratins. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
毛干DNA提取方法概述   总被引:1,自引:0,他引:1  
毛干作为最容易取得的一种无创、运输和储存方便的生物样本,对从核酸分子水平上进行各方面研究有着十分重要的意义。但毛干中DNA含量低,不易提取,而且存在大量角蛋白和色素,纯化不净会对下游PCR扩增等反应产生抑制作用。基于毛干DNA提取现状,综述并比较了近三十年动物及人类毛发的毛干DNA提取、纯化等相关方法,拟为毛干DNA提取在分子生物学各领域的推广应用提供充分的文献支持和参考。  相似文献   

8.
目的 毛干是案件现场常见的生物物证,目前缺少有效的个体识别方法而未能在案件调查和法庭诉讼中发挥作用。毛干蛋白质组中的单氨基酸多态性(SAP)蕴含着个体遗传差异信息,可应用于个体识别。方法 为研究毛干物证SAP个体差异,本文使用离子液体对12份2 cm长的毛干样本(6人,每人2根)经过前处理后,进行LC-MS/MS质谱检测,分析毛干中的蛋白质组成。然后利用自建的东亚人群SAP蛋白质序列数据库,对质谱数据进行搜库分析,依据自建的SAP与SNP对应注释表信息,推导出SAP对应的nsSNP分型,并且与外显子测序nsSNP结果比较,进而验证SAP检测的准确性。最后,利用验证准确的SAP分型进行随机匹配概率的计算。结果 12份样品共计获得321个SAP,每个样本平均为(131±17)个。6人的随机匹配概率数值范围为1.4×10-4~1.0×10-9结论 本文建立了东亚人群毛干蛋白中SAP检测方法,并验证了个体识别应用的能力,为法庭科学中毛干个体识别提供了有力的工具和新的思路。  相似文献   

9.
Striving towards an in depth understanding of stimulus transformation in arthropod tactile hairs, we studied the mechanical events associated with tactile stimulation. A finite element model was developed taking a tarsal tactile hair of the spider Cupiennius salei as an example. Considering hair diameter, wall thickness, and curvature, the hair is subdivided into six regions each with its specific mechanical properties. When the hair is touched from above with a flat surface oriented parallel to the tarsus the point of stimulus contact moves towards the hair base with increasing load and hair deflection. Thereby the effective lever arm is reduced protecting the hair against breaking near its base. At the same time the mechanical working range of the hair increases implying higher mechanical sensitivity for small deflections (about 5x10(-5) N/degrees) than for large deflections (about 1x10(-4) N/degrees). The major stresses within the hair shaft are axial stresses due to bending. The position of stress maxima moves along the shaft with the movement of the stimulus contact point. Remarkably, the amplitude of this maximum (about 1x10(5) N/m2) hardly changes with increasing loading force due to the way the hair shaft is deflected by the stimulus.  相似文献   

10.
11.
A cross-sectional sample of 3136 scalp hair drawn from 392 individuals aged 10 to 60 years and belonging to the Bania (n = 201) and Brahmin (n = 191) caste groups of Punjab State of India were examined for diameters of hair shaft and medulla, scale count, medulla type, hair index, medullary index and scale-count index, employing standard procedures. The mean hair shaft diameter, medullary diameter, incidence of medullation and scale-count index was higher in males, while the mean scale count was higher in females. However, with a few exceptions, the gender differences were not statistically significant (p < 0.05). The Brahmins showed significantly (p < 0.05) higher mean values of hair shaft diameter and scale count than the Banias. The mean scale-count index was higher among the Banias. The fragmentary medulla was the most common medullary type among the Banias, while the continuous medulla was the most frequent type of medulla among the Brahmins. The frequency of medullation was significantly more among the Banias. On the average, the hair shaft diameter and diameter of medulla increased up to 30 years. Some age variations in medullation were noticed in both the caste groups. No clear age trend was noticeable in the scale count. By and large, the mean hair shaft diameter of the Banias was less than that of other populations. The mean hair shaft diameter of the Brahmin males was greater than that of the Banias, the Onges, and the Bengalees. The Brahmin females showed greater mean hair shaft diameter than that of the Banias, the Australian Aborigines, the Juangs and the Onges. Human scalp hair shows some age, gender and population variations in micro-morphological variables which have the potential of being useful for anthropological and forensic investigations.  相似文献   

12.
13.
G. -W. Guse 《Protoplasma》1980,105(1-2):53-67
Summary The sensilla are associated with 6 enveloping cells. The innermost enveloping cell (e 1) secretes the dendritic sheath (=thecogen cell). All other enveloping cells are involved in the formation of the outer cuticular apparatus in secreting the cuticle of a definite region of the new hair shaft.The development of the new sensilla begins when an exuvial space expands between old cuticle and epithelium. The newly forming hair shafts lie folded back in an invagination of the epidermal tissue. Only a distal shaft part projects into the free exuvial space. The cuticle of the distal and middle shaft region is secreted by the three middle enveloping cells (e 2–e 4) (=trichogen cells), which are arranged around the dendritic sheath.The wall of the cylinder, in which the distal shaft is situated, is formed by the cuticle of the future proximal shaft region. It is secreted by the outer enveloping cells (e 5 and e 6). Furthermore, both enveloping cells form the hair socket (=trichogen-tormogen cells).The outer dendritic segments encased within a dendritic sheath run up through the newly formed hair shaft and continue to the old cuticular apparatus. The connection between sensory cells and old hair shaft is maintained until ecdysis. On ecdysis the old cuticle is shed and the newly formed shaft of the sensillum is everted like the invaginated finger of a glove. The dendritic sheath and the outer dendritic segments break off at the tip of the new hair shaft. Morphologically this moulting process ensures that the sensitivity of the receptors is maintained until ecdysis.The internal organization of the sensory cells shows no striking changes during the moulting cycle. An increased number of vesicles is accumulated distally within the inner dendritic segments and distributed throughout the outer segments of the dendrites. The cytoplasmic feature of the enveloping cells indicates that synthesis and release of substances for the cuticular apparatus of the new sensillum take place.  相似文献   

14.
Effects of Wnt-10b on hair shaft growth in hair follicle cultures   总被引:1,自引:0,他引:1  
Wnts are deeply involved in the proliferation and differentiation of skin epithelial cells. We previously reported the differentiation of cultured primary skin epithelial cells toward hair shaft and inner root sheath (IRS) of the hair follicle via beta-catenin stabilization caused by Wnt-10b, however, the effects of Wnt-10b on cultured hair follicles have not been reported. In the present study, we examined the effects of Wnt-10b on shaft growth using organ cultures of whisker hair follicles in serum-free conditions. No hair shaft growth was observed in the absence of Wnt-10b, whereas its addition to the culture promoted elongation of the hair shaft, intensive incorporation of BrdU in matrix cells flanking the dermal papilla (DP), and beta-catenin stabilization in DP and IRS cells. These results suggest a promoting effect of Wnt-10b on hair shaft growth that is involved with stimulation of the DP via Wnt-10b/beta-catenin signalling, proliferation of matrix cells next to the DP, and differentiation of IRS cells by Wnt-10b.  相似文献   

15.
Hair growth in mouse mutants affecting coat texture   总被引:1,自引:0,他引:1  
Monica J.  Trigg 《Journal of Zoology》1972,168(2):165-198
The genetic control of hair growth has been studied in mice carrying the following coat texture genes: fz (fuzzy), soc (soft coat), hid (hair interior defect), sa (satin), It (lustrous), Ve (velvet), wa-1 (waved-1), Re (rex), Re wc (wavy coat) and pk (plucked).
A general effect on cells of epidermal origin, found in soc/soc and Ve /+ skin samples illustrates how common factors control developmental potential in both the stratum germinativum and the follicle bulb. A direct influence on follicle bulb development is also seen in fz/fz homozygotes in which the dermal papilla functions abnormally. The role of the bulb cells and the dermal papilla in the control of hair shaft calibre is discussed.
hid is a new gene, found in homozygous condition in all mice of the AKR inbred strain. hid and sa appear primarily to be concerned in the differentiation of the medulla.
In the hair waving mutants, waved-1, rex and wavy coat, the processes controlling hair movement within the follicle are disturbed. These genes appear to regulate internal root sheath function. When the normal relationship between internal root sheath and developing hair shaft is disturbed, shaft movement slows, with the subsequent development of shaft calibre abnormalities.
pk acts at the level of the sebaceous gland, disturbing the normal process of hair eruption. The roles of the internal root sheath, external root sheath and the sebaceous gland in hair eruption are discussed.
The abnormal epidermal layer in soc/soc and Ve /+ skin also disturbs hair eruption to a small extent. The resulting abnormalities this causes in hair shaft formation are compared with those found pk/pk samples and also with the similar effects of faulty hair movement in the hair waving mutants. An effect on pigmentation is also described.
The chemistry of keratinization appears to be normal in all these mutants.  相似文献   

16.
Summary The mechanoreceptive and chemoreceptive hairs on the legs of the cribellate spiderCiniflo similis were examined during the moulting cycle. In mechanoreceptive hairs the new hair shaft is formed around the extended dentrites, which emerge from near the tip of the newly forming hair and continue to the old sensillum within the extended dendritic sheath. Thus there is no ecdysial canal in the base of the hair shaft as found in insect mechanoreceptive hairs. The dendritic connection with the old hair is maintained until shortly before ecdysis by which time new tubular bodies have developed in the same dendrites at the base of the new hair. In chemoreceptive sensilla the new hair shaft is also formed around the elongated outer segment of the dendrites (19 chemosensitive and 2 mechanosensitive). The two mechanosensitive dendrites develop new tubular bodies at the base of the hair. As ecdysis occurs the old dendritic sheath and dendrites are snapped off at the tip of the new hair but the pore remains open. The ultrastructural evidence indicates that the roles of the three main enveloping cells are as follows: The dendritic sheath cell secretes the dendritic sheath, the middle enveloping cell forms the hair shaft while the outer enveloping cell forms the socket. This pattern corresponds closely to that observed in insecta sensilla. The extreme length of the chemoreceptive dendrites during moulting is mentioned in connection with receptor function. The unique multi-layered nature of the middle enveloping cell is seen as a device for the formation of regularly occurring rows of small spines on the shaft of the hair.  相似文献   

17.
Directional selectivities of mechanoreceptors that innervate filiform hairs on the crayfish tailfan were investigated with unidirectional, sinusoidal, water-motion stimuli. These recordings provide the first representative sample from filiform hair sensilla on the entire tailfan. The filiform hair receptors exhibit unimodal directional selectivity patterns that were well fitted by a cardioid function with a half-width of 122°. The preferred directions correspond to the major axis of hair motion, and are perpendicular to the orientation of lateral branches on the main hair shaft. Pooled plots of preferred directions demonstrate quadrimodal patterns on the telson and endopods which are associated with hair location, and a bimodal pattern on the exopods. For each appendage, the combination of the overall pattern of preferred directions with “coarse coding” of direction by individual receptors provides sensitivity to a full 0–360° range of water motion and the potential to discriminate the direction of water motion throughout this range. The results demonstrate several similarities to the wind-sensitive cercal receptor system in orthopteroid insects, and suggest that crustacean filiform hair receptors provide a sufficient sensory basis for behavioral orientation to water currents and shorelines. Accepted: 5 January 1998  相似文献   

18.
毛干是一种案件现场常见的生物物证,由于核DNA含量极少且高度降解,难以采用现有的短串联重复序列(short tandem repeat,STR)检验方法进行个人识别鉴定,目前仅使用线粒体DNA检验进行母系亲缘关系的判定,利用率非常低.毛干中蛋白质非常稳定,而且具有遗传多态性,表现为基因组中的非同义单核苷酸多态性(non-synonymous single nucleotide polymorphisms,ns SNPs),转录翻译后形成蛋白质序列中的单氨基酸多态性(single amino acid polymorphisms,SAPs).充分利用毛干蛋白质中蕴含的遗传信息,为案件提供线索和证据,是实际公安业务的迫切需求,具有重要的应用价值.本文选取了104份中国汉族的毛干样本进行蛋白质组的检测,共获得了703个SAP位点,位于460个蛋白质上,共推导出552个nsSNP位点.进一步筛选在所有样本中检出率超过15%的位点,获得了88个nsSNP位点,使用毛干样本对应的口腔拭子DNA对88个ns SNP位点进行一代测序验证.为评估发现的nsSNP位点对于人群的区分能力,以千人数据库(1 000 Genome Project)为参考数据库,采用聚类分析和群体匹配概率等方法对检测的19份毛干样本进行人群来源推断.结果显示,通过检测毛干蛋白质组中的ns SNP可以实现东亚、欧洲、非洲三大洲际人群的区分.  相似文献   

19.
Cao J  Wijaya R  Leroy F 《Biopolymers》2006,83(6):614-618
An attempt has been made to obtain intact individual keratin filaments of various levels from micron cortical, micron macrofibril to nano intermediate filament and polypeptide alpha-helix from the human hair shaft. The feasibility of this initiative has been largely demonstrated by finding that there is a longitudinal seam/zipper on the cuticle of the human hair shaft, which can be unzipped by certain solvents such as performic acid and urea, allowing one to use an anatomical approach to separate intact individual micron/nano filaments. Micron cortical and macrofibril filaments have been obtained. It is also found that the cortical filaments are twisted together to form a yarn, giving rise to the strength for the hair shaft; and that individual cortical filaments are often 2-2 paired in a similar structure to the double helix.  相似文献   

20.
We have estimated the intrinsic mechanical parameters of cricket cercal wind-receptor hairs. The hairs were modeled as an inverted pendulum, and mechanical parameters of the equation of motion were determined from data given by a systematic measurement of mobility by the least-square error method. The theoretical torque which turns the hair shaft is given by the drag force due to the moving air. The drag force is given by the method of Stokes' mechanical impedance of an oscillating cylinder in viscous fluid. The effect of the boundary layer in which air is stagnating on the substrate surface is also taken into account. The moment of inertia of a hair shaft shows a clear length dependency to the power of 4.32 of the hair length. The torsional resistance within the hair base and the stiffness of hair-supporting spring also show clear length dependencies to the power of 2.77 and 1.67, respectively. The torsional resistance within the hair base is so large that the hair is a strongly damped non-oscillatory second-order system. The large resistance within the hair base represents an efficient energy absorption by the sensory cell. The resistance seems to match with the source impedance, i.e., the frictional resistance at the site of air-hair contact. The impedance matching provides the condition of maximum power transmission from the moving air to the sensory cell. Structural scaling is discussed in relation to the functional scaling of the frequency-range fractionation of the mechanical filter array with a common biological design. Accepted: 24 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号