首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AZD6244 and MK2206 are targeted small-molecule drugs that inhibit MEK and AKT respectively. The efficacy of this combination in lung cancer is unknown. Our previous work showed the importance of activated AKT in mediating resistance of non-small cell lung cancer (NSCLC) to AZD6244. Thus we hypothesized that dual inhibition of both downstream MEK and AKT pathways would induce synergistic antitumor activity. In this study, we evaluated the efficacy of AZD6244 and MK2206 individually on a large panel of lung cancer cell lines. Then, we treated 28 human lung cancer cell lines with a combination of AZD6244 and MK2206 at clinically applicable drug molar ratios. The AZD6244-MK2206 combination therapy resulted in a synergistic effect on inhibition of lung cancer cell growth compared to the results of single drug treatment alone. MK2206 enhanced AZD6244-induced Bim overexpression and apoptosis in A549 and H157 cells. When we tested the combination of AZD6244 and MK2206 at ratios of 8∶1, 4∶1, 2∶1, and 1∶8, we found that the synergistic effect of the combination therapy was ratio-dependent. At ratios of 8∶1, 4∶1, and 2∶1, the drug combination consistently demonstrated synergy, whereas decreasing the ratio to 1∶8 resulted in a loss of synergy and produced an additive or antagonistic effect in most cell lines. Furthermore, the AZD6244-MK2206 combination therapy showed synergy in the suppression of A549 and H157 xenograft tumor growth and increased mean animal survival time. The AZD6244-MK2206 combination therapy resulted in effective inhibition of both p-ERK and p-AKT expression in tumor tissue. In addition, a significant increase of apoptosis was detected in tumor tissue from mice treated with AZD6244-MK2206 compared with that from the single agent treated mice. Our study suggests that the combination of AZD6244 and MK2206 has a significant synergistic effect on tumor growth in vitro and in vivo and leads to increased survival rates in mice bearing highly aggressive human lung tumors.  相似文献   

2.
Triple-negative breast cancer (TNBC) is the most outrageous subtype of breast cancer. Emphasizing the urge of new approach in cancer therapy, combinational drug therapy may be proven as an effective strategy. In our previous study, we reported that coralyne (COR) with paclitaxel (PTX) efficiently decreases the proliferation of MDA-MB-231 compared with MCF-7 cell line. Thus, we studied the effect of COR and PTX in combination on apoptosis of MDA-MB-231 cell line. In silico results demonstrated that COR intercalates DNA at a minor groove. In vitro approaches revealed that in combination (COR and PTX) increases the efficacy of apoptosis in MDA-MB-231 cell line by a significant increase in G1/S phase arrest, DNA fragmentation, and change in mitochondria membrane potential. The expression of ATM and ATR a serine/threonine-protein kinase, ataxia telangiectasia and Rad3-related protein were depleted with an increase in time from 24 to 48 hours in concurrent with increased levels of γH2AX indicating that DNA damage routes cells to enter apoptosis. This was confirmed by high levels of caspase-3 and cytochrome c. Also, the decrease in the expression levels of matrix metalloproteinase-9 confirmed the antimetastatic efficacy of COR + PTX. The present study indicates that the synergistic effect of COR and PTX can enhance apoptosis in MDA-MB-231 cell line and may be proven as a potential anticancer therapy against TNBC.  相似文献   

3.
Combination therapy is a novel cancer therapy approach that combines two or more chemotherapy drugs. This treatment modality enhances the efficacy of chemotherapy by targeting key pathways in an additive or synergistic manner. Therefore, we investigated the efficacy of combination therapy by widely used chemotherapy drug doxorubicin (DOX) and oleanolic acid (OA) to induction of apoptosis for pancreatic cancer (PC) therapy. The effects of DOX, OA, and their combination (DOX-OA) were investigated on proliferation and viability of PC cell line (PANC-1) by MTT assay. Moreover, migration and invasion of the cancer cells were evaluated by trans-well migration assay and wound healing assay. Flow cytometry and DAPI (4′,6-diamidino-2-phenylindole) staining were employed to investigate apoptosis quantification and qualification of the treated cancer cells. Finally, mRNA expression of apoptosis-related genes was assessed by quantitative real-time polymerase chain reaction. Our results demonstrated that the proliferation and metastasis potential of PC cells significantly decreased after treatment by DOX, OA, and DOX-OA. Moreover, we observed an increase in apoptosis percentage in the treated cancer cells. The apoptosis-related gene expression was modified to increase the apoptosis rate in all of the treatment groups. However, the anticancer potency of DOX-OA combination was significantly more than that of DOX and OA treatments alone. Our study suggested that DOX-OA combination exerts more profound anticancer effects against PC cell lines than DOX or OA monotherapy. This approach may increase the efficiency of chemotherapy and reduce unintended side effects by lowering the prescribed dose of DOX.  相似文献   

4.
Multiple myeloma is a malignancy of terminally differentiated plasma cells and is incurable in the majority of the patients. Thus, novel effective treatment regimens are urgently needed. In this study, we examined the effects of co-treatment with proteasome-inhibitor bortezomib and topoisomerase II inhibitor etoposide in multiple myeloma cells lines OPM-2, RPMI-S and NCI-H929. Using the median effect method of Chou and Talalay, we evaluated the combination indices (CI) for simultaneous and sequential treatment schedules. In the sequential treatment schedule, we found strong synergistic effects in all three cell lines, even at low single-agent cytotoxicity levels. When cells were treated simultaneously with both drugs, the synergy was present but less pronounced than in the sequential treatment schedule. The synergistic effects observed in the co-treatment schedules were accompanied by an inhibition of anti-apoptotic effects that were induced by etoposide alone. Namely, bortezomib abrogated both etoposide-induced NF-κB activation and etoposide-induced bcl-2 up-regulation. Our data suggest that combining etoposide with bortezomib might be useful for cancer treatment, as bortezomib potentially inhibits counter-regulatory mechanisms of tumor cells, which are induced by topoisomerase II inhibition and which may contribute to acquired chemoresistance.  相似文献   

5.
DNA methylation plays an important role in regulation of gene expression and is increasingly being recognized as a determinant of chemosensitivity of human cancers. With the aim of improving the chemotherapeutic efficacy of breast carcinoma, the effect of DNA methyltransferase inhibitor, 5-Aza-2′-deoxycytidine (5-aza-CdR), on the chemosensitivity of anticancer drugs was investigated. The cytotoxicity of paclitaxel (PTX), adriamycin (ADR), and 5-fluorouracil (5-FU) was analyzed against human breast cancer cell lines, MDA MB 231 and MCF 7 cell lines using the MTT assay, and the synergy of 5-aza-CdR and these agents was determined by Drewinko’s fraction method. The effects of each single agent or the combined treatment on cell cycle arrest were analyzed by flow cytometric analysis. We also investigated the effect of each single agent or the combined treatment of anticancer drugs with 5-aza-CdR on the methylation status of the selected genes by methylation specific PCR. In MDA MB 231 cells, a synergistic antiproliferative effect was observed with a combination of 10 μM 5-aza-CdR and these three anticancer drugs, while in MCF 7 cells, a semiadditive effect was observed. Treatment with 5-aza-CdR and anticancer drug resulted in partial demethylation of a panel of genes including RARβ2, Slit2, GSTP1, and MGMT. Based on these findings, we propose that 5-aza-CdR enhances the chemosensitivity of anticancer drugs in breast cancer cells and may be a promising approach for increasing the chemotherapeutic potential of these anticancer agents for more effective management of breast carcinomas.  相似文献   

6.
Inhibitors of the mammalian target of rapamycin (mTORi) have clinical activity; however, the benefits of mTOR inhibition by rapamycin and rapamycin-derivatives (rapalogs) may be limited by a feedback mechanism that results in AKT activation. Increased AKT activity resulting from mTOR inhibition can be a result of increased signaling via the mTOR complex, TORC2. Previously, we published that arsenic trioxide (ATO) inhibits AKT activity and in some cases, decreases AKT protein expression. Therefore, we propose that combining ATO and rapamycin may circumvent the AKT feedback loop and increase the anti-tumor effects. Using a panel of breast cancer cell lines, we find that ATO, at clinically-achievable doses, can enhance the inhibitory activity of the mTORi temsirolimus. In all cell lines, temsirolimus treatment resulted in AKT activation, which was decreased by concomitant ATO treatment only in those cell lines where ATO enhanced growth inhibition. Treatment with rapalog also results in activated ERK signaling, which is decreased with ATO co-treatment in all cell lines tested. We next tested the toxicity and efficacy of rapamycin plus ATO combination therapy in a MDA-MB-468 breast cancer xenograft model. The drug combination was well-tolerated, and rapamycin did not increase ATO-induced liver enzyme levels. In addition, combination of these drugs was significantly more effective at inhibiting tumor growth compared to individual drug treatments, which corresponded with diminished phospho-Akt and phospho-ERK levels when compared with rapamycin-treated tumors. Therefore, we propose that combining ATO and mTORi may overcome the feedback loop by decreasing activation of the MAPK and AKT signaling pathways.  相似文献   

7.
Two tetrahydroquinoline compounds, called DM8 and DM12, from a new series of the cis-2,4-diaryl-r-3-methyl-1,2,3,4-tetrahydroquinolines, were selected for cytotoxic effects studies on cellular lines of human breast cancer. The synergistic, additive and antagonistic effects in combination of these compounds with anticancer drugs, such as paclitaxel and gemcitabine, were studied. The isobolograms and their analysis demonstrated models of synergism, additivity and antagonism of these tetrahydroquinolines in the presence of paclitaxel and gemcitabine. Results showed that compounds DM8 and DM12 individually induced growth inhibition on breast cancer cell lines MCF-7 and SKBR3, and the addition of paclitaxel and gemcitabine intensified their cytotoxic activity on both cell lines at conc. below 1 μg/mL. During these studies the compound DM12 was identified as new, perspective and safe agent for adjuvant therapy.  相似文献   

8.

Background

Drug combination therapy, which is considered as an alternative to single drug therapy, can potentially reduce resistance and toxicity, and have synergistic efficacy. As drug combination therapies are widely used in the clinic for hypertension, asthma, and AIDS, they have also been proposed for the treatment of cancer. However, it is difficult to select and experimentally evaluate effective combinations because not only is the number of cancer drug combinations extremely large but also the effectiveness of drug combinations varies depending on the genetic variation of cancer patients. A computational approach that prioritizes the best drug combinations considering the genetic information of a cancer patient is necessary to reduce the search space.

Results

We propose an in-silico method for personalized drug combination therapy discovery. We predict the synergy between two drugs and a cell line using genomic information, targets of drugs, and pharmacological information. We calculate and predict the synergy scores of 583 drug combinations for 31 cancer cell lines. For feature dimension reduction, we select the mutations or expression levels of the genes in cancer-related pathways. We also used various machine learning models. Extremely Randomized Trees (ERT), a tree-based ensemble model, achieved the best performance in the synergy score prediction regression task. The correlation coefficient between the synergy scores predicted by ERT and the actual observations is 0.738. To compare with an existing drug combination synergy classification model, we reformulate the problem as a binary classification problem by thresholding the synergy scores. ERT achieved an F1 score of 0.954 when synergy scores of 20 and -20 were used as the threshold, which is 8.7% higher than that obtained by the state-of-the-art baseline model. Moreover, the model correctly predicts the most synergistic combination, from approximately 100 candidate drug combinations, as the top choice for 15 out of the 31 cell lines. For 28 out of the 31 cell lines, the model predicts the most synergistic combination in the top 10 of approximately 100 candidate drug combinations. Finally, we analyze the results, generate synergistic rules using the features, and validate the rules through the literature survey.

Conclusion

Using various types of genomic information of cancer cell lines, targets of drugs, and pharmacological information, a drug combination synergy prediction pipeline is proposed. The pipeline regresses the synergy level between two drugs and a cell line as well as classifies if there exists synergy or antagonism between them. Discovering new drug combinations by our pipeline may improve personalized cancer therapy.
  相似文献   

9.
The treatment outcome of acute lymphoblastic leukemia (ALL) has improved steadily over the last 50 years. However, the cure rates are unlikely to be raised further with current therapies. Since increasing the dosage of chemotherapeutic agents could also elevate toxicity, a solution to how one could achieve maximum therapeutic effect with the minimum dosage possible is imminent. One possibility is the employment of combination drug therapies. Arsenic trioxide (ATO) is a widely used drug for acute promyelocytic leukemia (APL). Its combination with other drugs presented therapeutic activities in malignant cancers other than APL. Considering the fact that ATO induces mitotic arrest prior to apoptosis induction, we attempted to investigate the potential anti-cancer effects of ATO in combination with the microtubule-stabilizing agent, paclitaxel (PTX), using malignant lymphocytes as in vitro models. Three malignant lymphocytic cell lines and primary cells were treated with ATO and/or PTX. Using the Chou–Talalay analysis for evaluation of combined effect of ATO and PTX, we found a synergistic effect of the two drugs in the inhibition of cell growth. We also found that the combination of ATO and PTX at low concentrations synergistically induced mitotic arrest followed by apoptosis in malignant lymphocytes, which increased phosphorylated cyclin-dependent kinase 1 (Cdk1) on Thr161 and promoted the dysregulated activation of Cdk1. The ATO/PTX combination also significantly enhanced the activation of spindle checkpoint by inducing the formation of the inhibitory checkpoint complex BubR1/Cdc20. Our study provided the first in vitro demonstration that low concentrations of ATO and PTX synergistically induce mitotic arrest in malignant lymphocytes.  相似文献   

10.
The initial response rates of advanced-stage epithelial ovarian cancer to the chemotherapeutic agents carboplatin and paclitaxel are high. However, once drug resistance develops, further chemotherapy is less effective. The objective of this study is to investigate the anti-proliferative activity of the phyto-active chemicals (PACs) oridonin and wogonin in chemo-resistant epithelial ovarian cancer cells. Primary cell cultures from the ascitic fluid of three patients at diagnosis, two patients chemo-resistant to carboplatin and paclitaxel, and one patient treated with letrozole for breast cancer were studied and compared to the ovarian cancer cell lines A2780 and PTX10, by cell viability assay (MTS). Effects on cell cycle modulation and apoptosis were examined by flow cytometry and Western blot analysis (WB). WB was further conducted to investigate protein expressions altered by PACs. The results show that IC50 of the primary cultures ranged from 0.6 to 5.4 μg/ml for oridonin and 0.3–12.7 μg/ml for wogonin. The paclitaxel-resistant cell line PTX10 was more sensitive to each of the PACs than the chemo-sensitive cell line A2780. Of particular interest is that in combination, the two PACs were synergistic in their cytotoxicity to five of six of the primary cultures and to both the cell lines (combination indices of 0.39–0.95). The inhibition is attributable to apoptosis and cell cycle modulation induced by the PACs as demonstrated in A2780 and PTX10. Up-regulation of the functional p53 protein in A2780 and down-regulation of Akt protein in PTX10 have in part contributed to the apoptosis. These findings suggest that oridonin and wogonin may have activity in ovarian cancer following its development of resistance to carboplatin and paclitaxel.  相似文献   

11.
The effects of anticancer drugs and toxic compounds on leukemic cells in culture were evaluated by enzyme-linked-immunosorbent assay (ELISA) based on the detection of apoptotic cells by a monoclonal antibody against single-stranded DNA. The concentrations of 13 anticancer drugs, which increased apoptosis ELISA absorbance, were similar to the concentrations decreasing long-term cell survival. Short-term metabolic tetrazolium-based 3-(4,5-dimethylthiazol-yl)-2,5-diphenyformazan bromide (MTT) assay was significantly less sensitive than apoptosis ELISA and the cell survival assay. In contrast to anticancer drugs, 12 toxic chemicals did not increase apoptosis ELISA absorbance at cytotoxic concentrations. The difference between two groups of compounds by apoptosis ELISA was especially large in cultures treated with twofold of concentrations producing 50% inhibition of cell growth: all anticancer drugs induced intense reaction (mean absorbance 2.0), while none of the toxic chemicals induced apoptosis. The application of apoptosis ELISA to chemosensitivity testing was evaluated by its ability to detect synergism of anticancer drug combinations. Among 66 drug combinations tested, only combination of nitrogen mustard with mithramycin was highly synergistic by the apoptosis ELISA, as defined by apoptosis induction with the combination containing each drug at 50% of effective concentration. This combination was also synergistic in the cell survival assay, producing significant cell kill while each drug alone had no effect on cell survival. This synergism was not detected by MTT assay. We conclude that apoptosis ELISA could be useful for drug development and chemosensitivity assessment as it can distinguish clinically useful anticancer drugs from toxic compounds, is as sensitive as the long-term cell survival assay and can detect anticancer drug synergism by rapid evaluation of apoptosis induction.  相似文献   

12.
Breast cancer is the leading cause of deaths in women around the world. Resistance to therapy is the main cause of treatment failure and still little is known about predictive biomarkers for response to systemic therapy. Increasing evidence show that Survivin and XIAP overexpression is closely associated with chemoresistance and poor prognosis in breast cancer. However, their impact on resistance to doxorubicin (dox), a chemotherapeutic agent widely used to treat breast cancer, is poorly understood. Here, we demonstrated that dox inhibited cell viability and induced DNA fragmentation and activation of caspases-3, -7 and -9 in the breast cancer-derived cell lines MCF7 and MDA-MB-231, regardless of different p53 status. Dox exposure resulted in reduction of Survivin and XIAP mRNA and protein levels. However, when we transfected cells with a Survivin-encoding plasmid, we did not observe a cell death-resistant phenotype. XIAP and Survivin silencing, either alone or in combination, had no effect on breast cancer cells sensitivity towards dox. Altogether, we demonstrated that breast cancer cells are sensitive to the chemotherapeutic agent dox irrespective of Survivin and XIAP expression levels. Also, our findings suggest that dox-mediated modulation of Survivin and XIAP might sensitize cells to taxanes when used in a sequential regimen.  相似文献   

13.
Inhibitors of the tyrosine kinase activity of epidermal growth factor receptor, as erlotinib, have an established role in treating several cancer types. However, resistance to erlotinib, particularly in breast cancer cell lines, and erlotinib treatment-associated disorders have also been described. Also, methods and combination therapies that could reverse resistance and ameliorate non-desirable effects represent a clinical challenge. Here, we show that the ATP non-competitive CDK2/cyclin A inhibitor NBI1 sensitizes erlotinib-resistant tumor cells to the combination treatment (co-treatment) for apoptosis-mediated cell death. Furthermore, in erlotinib-sensitive cells, the effective dose of erlotinib was lower in the presence of NBI1. The analysis in the breast cancer MDA-MB-468 erlotinib-resistant and in lung cancer A549 cell lines of the molecular mechanism underlying the apoptosis induced by co-treatment highlighted that the accumulation of DNA defects and depletion of cIAP and XIAP activates the ripoptosome that ultimately activates caspases-8 and -10 and apoptosis. This finding could have significant implications for future treatment strategies in clinical settings.  相似文献   

14.
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.  相似文献   

15.
Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit.

To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage.

Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells’ sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.  相似文献   

16.
BackgroundTreatment and morbidity control of schistosomiasis relies on a single drug, praziquantel (PZQ), and the selection of resistant worms under repeated treatment is a concern. Therefore, there is a pressing need to understand the molecular effects of PZQ on schistosomes and to investigate alternative or synergistic drugs against schistosomiasis.MethodologyWe used a custom-designed Schistosoma mansoni expression microarray to explore the effects of sublethal doses of PZQ on large-scale gene expression of adult paired males and females and unpaired mature females. We also assessed the efficacy of PZQ, omeprazole (OMP) or their combination against S. mansoni adult worms with a survival in vitro assay.ConclusionsFunctional analysis of gene interaction networks is an important approach that can point to possible novel synergistic drug candidates. We demonstrated the potential of this strategy by showing that PZQ in combination with OMP displayed increased efficiency against S. mansoni adult worms in vitro when compared with either drug alone.  相似文献   

17.
Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)–negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.  相似文献   

18.
BackgroundOncogenic mutations in the KRAS gene are very common in human cancers, resulting in cells with well-characterized selective advantages. For more than three decades, the development of effective therapeutics to inhibit KRAS-driven tumorigenesis has proved a formidable challenge and KRAS was considered ‘undruggable’. Therefore, multi-targeted therapy may provide a reasonable strategy for the effective treatment of KRAS-driven cancers. Here, we assess the efficacy and mechanistic rationale for combining HASPIN and mTOR inhibition as a potential therapy for cancers carrying KRAS mutations.MethodsWe investigated the synergistic effect of a combination of mTOR and HASPIN inhibitors on cell viability, cell cycle, cell apoptosis, DNA damage, and mitotic catastrophe using a panel of human KRAS-mutant and wild-type tumor cell lines. Subsequently, the human transplant models were used to test the therapeutic efficacy and pharmacodynamic effects of the dual therapy.ResultsWe demonstrated that the combination of mTOR and HASPIN inhibitors induced potent synergistic cytotoxic effects in KRAS-mutant cell lines and delayed the growth of human tumor xenograft. Mechanistically, we showed that inhibiting of mTOR potentiates HASPIN inhibition by preventing the phosphorylation of H3 histones, exacerbating mitotic catastrophe and DNA damage in tumor cell lines with KRAS mutations, and this effect is due in part to a reduction in VRK1.ConclusionsThese findings indicate that increased DNA damage and mitotic catastrophe are the basis for the effective synergistic effect observed with mTOR and HASPIN inhibition, and support the clinical evaluation of this dual therapy in patients with KRAS-mutant tumors.  相似文献   

19.
Overcoming de novo and acquired resistance to anticancer drugs that target signaling networks is a formidable challenge for drug design and effective cancer therapy. Understanding the mechanisms by which this resistance arises may offer a route to addressing the insensitivity of signaling networks to drug intervention and restore the efficacy of anticancer therapy. Extending our recent work identifying PTEN as a key regulator of Herceptin sensitivity, we present an integrated theoretical and experimental approach to study the compensatory mechanisms within the PI3K/PTEN/AKT signaling network that afford resistance to receptor tyrosine kinase (RTK) inhibition by anti-HER2 monoclonal antibodies. In a computational model representing the dynamics of the signaling network, we define a single control parameter that encapsulates the balance of activities of the enzymes involved in the PI3K/PTEN/AKT cycle. By varying this control parameter we are able to demonstrate both distinct dynamic regimes of behavior of the signaling network and the transitions between those regimes. We demonstrate resistance, sensitivity, and suppression of RTK signals by the signaling network. Through model analysis we link the sensitivity-to-resistance transition to specific compensatory mechanisms within the signaling network. We study this transition in detail theoretically by variation of activities of PTEN, PI3K, AKT enzymes, and use the results to inform experiments that perturb the signaling network using combinatorial inhibition of RTK, PTEN, and PI3K enzymes in human ovarian carcinoma cell lines. We find good alignment between theoretical predictions and experimental results. We discuss the application of the results to the challenges of hypersensitivity of the signaling network to RTK signals, suppression of drug resistance, and efficacy of drug combinations in anticancer therapy.  相似文献   

20.
The aim of this study was to explore whether rhein could enhance the effects of pemetrexed (PTX) on the therapy of non-small-cell lung cancer (NSCLC) and to clarify the associated molecular mechanism. Our study shows that rhein in combination with PTX could obviously increase the systemic exposure of PTX in rats, which would be mediated by the inhibition of organic anion transporters (OATs). Furthermore, the toxicity of PTX was significantly raised by rhein in A549 cells in a concentration-dependent manner. Concomitant administration of rhein and PTX-induced cell apoptosis compared with PTX alone in flow cytometry assays, which was further validated by the protein expressions of the apoptotic markers B-cell lymphoma-2/Bcl-2-associated x (Bcl-2/Bax) and Cleaved-Caspase3 (Cl-Caspase3). Meanwhile, the results of monodansylcadaverine (MDC) dyeing experiments showed that PTX-induced autophagy could be enhanced by combination therapy with rhein in A549 cells. Western blot analysis indicated that the synergistic effect of rhein on PTX-mediated autophagy may be interrelated to PI3K–AKT–mTOR pathway inhibition and to the enhancement of p-AMPK and light chain 3-II (LC3-II) protein levels. From these findings, it could be surmised that rhein enhanced the antitumor activity of PTX through influencing autophagy and apoptosis by modulating the PI3K–AKT–mTOR pathway and Bcl-2 family of proteins in A549 cells. Our findings demonstrated that the potential application of rhein as a candidate drug in combination with PTX is promising for treatment of the human lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号