首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l−1) and accumulate ammonia to high concentrations in its brain (∼4.5 µmol g−1). Na+/K+-ATPase (Nka) is an essential transporter in brain cells, and since NH4 + can substitute for K+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4 + to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na+/K+-ATPase and Na+/NH4 +-ATPase activities over a range of K+/NH4 + concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b) were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l−1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na+/NH4 +-ATPase activities were significantly lower than the Na+/K+-ATPase activities assayed at various NH4 +/K+ concentrations. Furthermore, the effectiveness of NH4 + to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1) lack of nkaα2 expression, (2) high K+ specificity of K+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3) down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.  相似文献   

2.
Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.  相似文献   

3.
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na+,K+-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na+,K+-ATPase mutations, extending the C terminus by either 28 residues (“+28” mutation) or an extra tyrosine (“+Y”), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na+ affinity without disturbance of K+ binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na+]i and reduction of [K+]i was detected in cells expressing mutants with reduced Na+ affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na+ affinity were found to reduce [Na+]i. It is concluded that the Na+ affinity of the Na+,K+-ATPase is an important determinant of [Na+]i.  相似文献   

4.
The Na+,K+-ATPase binds Na+ at three transport sites denoted I, II, and III, of which site III is Na+-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na+ affinity in the α1-, α2-, and α3-isoforms of Na+,K+-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na+-coordinating residues in site III. Remarkably, the Na+ affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na+ binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na+ affinity is likely intrinsic to the Na+ binding pocket, and the underlying mechanism could be a tightening of Na+ binding at Na+ site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na+,K+ pump function in intact cells. Rescue of Na+ affinity and Na+ and K+ transport by second-site mutation is unique in the history of Na+,K+-ATPase and points to new possibilities for treatment of neurological patients carrying Na+,K+-ATPase mutations.  相似文献   

5.
The epithelial sodium channel is a multimeric protein formed by three homologous subunits: α, β, and γ; each subunit contains only two transmembrane domains. The level of expression of each of the subunits is markedly different in various Na+ absorbing epithelia raising the possibility that channels with different subunit composition can function in vivo. We have examined the functional properties of channels formed by the association of α with β and of α with γ in the Xenopus oocyte expression system using two-microelectrode voltage clamp and patch-clamp techniques. We found that αβ channels differ from αγ channels in the following functional properties: (a) αβ channels expressed larger Na+ than Li+ currents (INa+/ILi+ 1.2) whereas αγ channels expressed smaller Na+ than Li+ currents (INa+/ILi+ 0.55); (b) the Michaelis Menten constants (K m) of activation of current by increasing concentrations of external Na+ and Li+ of αβ channels were larger (K m > 180 mM) than those of αγ channels (K m of 35 and 50 mM, respectively); (c) single channel conductances of αβ channels (5.1 pS for Na+ and 4.2 pS for Li+) were smaller than those of αγ channels (6.5 pS for Na+ and 10.8 pS for Li+); (d) the half-inhibition constant (K i) of amiloride was 20-fold larger for αβ channels than for αγ channels whereas the K i of guanidinium was equal for both αβ and αγ. To identify the domains in the channel subunits involved in amiloride binding, we constructed several chimeras that contained the amino terminus of the γ subunit and the carboxy terminus of the β subunit. A stretch of 15 amino acids, immediately before the second transmembrane domain of the β subunit, was identified as the domain conferring lower amiloride affinity to the αβ channels. We provide evidence for the existence of two distinct binding sites for the amiloride molecule: one for the guanidium moiety and another for the pyrazine ring. At least two subunits α with β or γ contribute to these binding sites. Finally, we show that the most likely stoichiometry of αβ and αγ channels is 1α:1β and 1α:1γ, respectively.  相似文献   

6.
7.
Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K+ transport apparatuses including Na+, K+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na+, K+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na+, K+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na+, K+-ATPase α1, as well as Na+, K+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na+, K+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na+, K+-ATPase activity in the cochlear lateral wall structures.  相似文献   

8.
The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.  相似文献   

9.
This study aimed to obtain the coding cDNA sequences of Na+/K+-ATPase α (nkaα) isoforms from, and to quantify their mRNA expression in, the skeletal muscle (SM), the main electric organ (EO), the Hunter’s EO and the Sach’s EO of the electric eel, Electrophorus electricus. Four nkaα isoforms (nkaα1c1, nkaα1c2, nkaα2 and nkaα3) were obtained from the SM and the EOs of E. electricus. Based on mRNA expression levels, the major nkaα expressed in the SM and the three EOs of juvenile and adult E. electricus were nkaα1c1 and nkaα2, respectively. Molecular characterization of the deduced Nkaα1c1 and Nkaα2 sequences indicates that they probably have different affinities to Na+ and K+. Western blotting demonstrated that the protein abundance of Nkaα was barely detectable in the SM, but strongly detected in the main and Hunter’s EOs and weakly in the Sach’s EO of juvenile and adult E. electricus. These results corroborate the fact that the main EO and Hunter’s EO have high densities of Na+ channels and produce high voltage discharges while the Sach’s EO produces low voltage discharges. More importantly, there were significant differences in kinetic properties of Nka among the three EOs of juvenile E. electricus. The highest and lowest V max of Nka were detected in the main EO and the Sach’s EO, respectively, with the Hunter’s EO having a V max value intermediate between the two, indicating that the metabolic costs of EO discharge could be the highest in the main EO. Furthermore, the Nka from the main EO had the lowest Km (or highest affinity) for Na+ and K+ among the three EOs, suggesting that the Nka of the main EO was more effective than those of the other two EOs in maintaining intracellular Na+ and K+ homeostasis and in clearing extracellular K+ after EO discharge.  相似文献   

10.
11.
The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles.  相似文献   

12.
13.
Transplasmalemma redox activity, monitored in the presence of exogenous ferricyanide stimulates net H+ excretion and inhibits the uptake of K+ and α-aminoisobutyric acid by freshly cut or washed, apical and subapical root segments of corn (Zea mays L. cv “Seneca Chief”). H+ excretion is seen only following a lag of about 5 minutes after ferricyanide addition, even though the reduction of ferricyanide occurs before 5 minutes and continues linearly. Once detected, the enhanced rate of H+ excretion is retarded by the ATPase inhibitors N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, and vanadate. A model is presented in which plasmalemma redox activity in the presence of ferricyanide involves the transport only of electrons across the plasmalemma, resulting in a depolarization of the membrane potential and activation of an H+-ATPase. Such a model implies that this class of redox activity does not provide an additional and independent pathway for H+ transport, but that the activity may be an important regulator of H+ excretion. The 90% inhibition of K+ (86Rb+) uptake within 2 minutes after ferricyanide addition can be contrasted with the 5 to 15% inhibition of uptake of α-aminoisobutyric acid. The possibility exists that a portion of the K+ and most of the α-aminoisobutyric acid uptake inhibitions are related to the ferricyanide-induced depolarization of the membrane potential, but that the redox state of some component of the K+ uptake system may also regulate K+ fluxes.  相似文献   

14.
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex.  相似文献   

15.
The H+/ATP stoichiometry was determined for an anion-sensitive H+-ATPase in membrane vesicles believed to be derived from tonoplast. Initial rates of proton influx were measured by monitoring the alkalinization of a weakly buffered medium (pH 6.13) following the addition of ATP to a suspension of membrane vesicles of Beta vulgaris L. Initial rates of ATP hydrolysis were measured in an assay where ATP hydrolysis is coupled to NADH oxidation and monitored spectrophotometrically (A340) or by monitoring the release of 32P from [γ-32P]ATP. Inasmuch as this anion-sensitive H+-ATPase is strongly inhibited by NO3, initial rates of H+ influx and ATP hydrolysis were measured in the absence and presence of NO3 to account for ATPase activity not involved in H+ transport. The NO3-sensitive activities were calculated and used to estimate the ratio of H+ transported to ATP hydrolyzed. These measurements resulted in an estimate of the H+/ATP stoichiometry of 1.96 ± 0.14 suggesting that the actual stoichiometry is 2 H+ transported per ATP hydrolyzed. When compared with the reported values of the electrochemical potential gradient for H+ across the tonoplast measured in vivo, our result suggests that the H+-ATPase does not operate near equilibrium but is regulated by cellular factors other than energy supply.  相似文献   

16.
A membrane-bound, monovalent cation-stimulated ATPase from Zea mays roots has been purified to a single band on sodium dodecyl sulfate gel electrophoresis. Microsomal preparations with K+ -stimulated ATPase activity were extracted with 1 m NaClO4, and the solubilized enzyme was purified by chromatography on columns of n-hexyl-Sepharose, DEAE-cellulose, and Sephadex G-100 Superfine. A 500-fold purification over the activity present in the microsomes was obtained. The K+ -stimulated activity shows positive cooperativity with increasing KCl concentrations. The purified enzyme shows K+ -stimulated activity with ATP, GTP, UTP, CTP, ADP, α + β-glycerophosphate, p-nitrophenyl phosphate, and pyrophosphate as substrates. Under most conditions ATP is the best substrate. Although dicyclohexyl carbodiimide and Ca2+ inhibit and alkylguanidines stimulate the K+ -ATPase while bound to microsomes, they have no effect on the purified enzyme.  相似文献   

17.
Proton (H+) conductive pathways are suggested to play roles in the regulation of intracellular pH. We characterized temperature-sensitive whole cell currents in mouse bone marrow–derived mast cells (BMMC), immature proliferating mast cells generated by in vitro culture. Heating from 24 to 36°C reversibly and repeatedly activated a voltage-dependent outward conductance with Q10 of 9.9 ± 3.1 (mean ± SD) (n = 6). Either a decrease in intracellular pH or an increase in extracellular pH enhanced the amplitude and shifted the activation voltage to more negative potentials. With acidic intracellular solutions (pH 5.5), the outward current was detected in some cells at 24°C and Q10 was 6.0 ± 2.6 (n = 9). The reversal potential was unaffected by changes in concentrations of major ionic constituents (K+, Cl, and Na+), but depended on the pH gradient, suggesting that H+ (equivalents) is a major ion species carrying the current. The H+ current was featured by slow activation kinetics upon membrane depolarization, and the activation time course was accelerated by increases in depolarization, elevating temperature and extracellular alkalization. The current was recorded even when ATP was removed from the intracellular solution, but the mean amplitude was smaller than that in the presence of ATP. The H+ current was reversibly inhibited by Zn2+ but not by bafilomycin A1, an inhibitor for a vacuolar type H+-ATPase. Macroscopic measurements of pH using a fluorescent dye (BCECF) revealed that a rapid recovery of intracellular pH from acid-load was attenuated by lowering temperature, addition of Zn2+, and depletion of extracellular K+, but not by bafilomycin A1. These results suggest that the H+ conductive pathway contributes to intracellular pH homeostasis of BMMC and that the high activation energy may be involved in enhancement of the H+ conductance.  相似文献   

18.
Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5−/−) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5−/− mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5−/− mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5−/− mice. The increased FENa+ observed in Pla2g5−/− mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5−/− mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity.  相似文献   

19.
Miller DM 《Plant physiology》1985,77(1):162-167
The cut ends of excised Zea mays roots were sealed to a pressure transducer and their root pressures recorded. These rose approximately hyperbolically to a maximum value of 4.21 ± 0.34 bar after 30 to 40 minutes. Xylem exudate could not be collected at this pressure since the flow rate was zero. Samples of exudate were collected at lower applied pressures (ΔP), however, and Δπ, the osmotic pressure difference between them and the solution bathing the root, was measured by freezing point depression. A plot of ΔP/Δπ against Jv/Δπ, where Jv is the volume flux, proved to be a straight line whose intercept, equal to σ, the reflection coefficient, was 0.853 ± 0.016. The maximum xylem concentrations of various chemical species were found by a similar extrapolative method and compared with those in the cell sap. This indicated that (a) Ca2+, Mg2+, NO32−, SO42−, and most amino acids move from the cells to the xylem down an electrochemical potential gradient; (b) relative to these ions H+, NH4+, glutamine and asparagine are actively transported into the xylem; and (c) H2PO4, and K+ are actively retained in the symplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号