首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Six squirrel monkeys (Saimiri sciureus) were implanted with intracerebral electrodes yielding specific call types when electrically stimulated. Two animals then received bilateral transection of the recurrent nerve; in another two animals the external branch of the superior laryngeal nerve was cut bilaterally; two further animals received unilateral transection of either the recurrent or the external laryngeal nerve. In one animal with both recurrent nerves cut, the external laryngeal nerves were cut in addition 3 months later. The vocal changes caused by these transections were observed and can be summarized as follows:Unilateral interruption of the recurrent nerve causes only minor disturbances which are limited to low-pitched sounds. Bilateral interruption of the same nerve leads to a reduction of maximal intensities and durations in general. Whereas the frequency-time structure is severely disorganized in all harmonic calls with a fundamental below 1 kHz and all non-harmonic, noise-like calls, it remains unaffected in harmonic calls with a fundamental above 1 kHz. Unilateral transection of the external laryngeal nerve causes a drop of fundamental frequency in high-pitched calls to almost half. Bilateral transection of the same nerve abolishes all calls with a fundamental above 1 kHz. In wide-band frequency calls it is followed by a shift of main energy towards lower frequencies. Low-pitched harmonic as well as noise-like calls remain normal. Cutting both external laryngeal nerves in addition to recurrent nerves is followed by loss of all sounds except one coughing-like, abnormal call. All animals with transection of the external laryngeal nerve show recovery of the high-pitched calls which seems to be due to new innervation of the cricothyroid muscle from the pharyngeal plexus.  相似文献   

2.
Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex.  相似文献   

3.
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.  相似文献   

4.
基于MFCC和GMM的昆虫声音自动识别   总被引:1,自引:0,他引:1  
竺乐庆  张真 《昆虫学报》2012,55(4):466-471
昆虫的运动、 取食、 鸣叫都会发出声音, 这些声音存在种内相似性和种间差异性, 因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后, 提取梅尔倒谱系数(Mel frequency cepstrum coefficient, MFCC)作为特征, 并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixture model, GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估, 取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。  相似文献   

5.
Sayles M  Winter IM 《Neuron》2008,58(5):789-801
Accurate neural coding of the pitch of complex sounds is an essential part of auditory scene analysis; differences in pitch help segregate concurrent sounds, while similarities in pitch can help group sounds from a common source. In quiet, nonreverberant backgrounds, pitch can be derived from timing information in broadband high-frequency auditory channels and/or from frequency and timing information carried in narrowband low-frequency auditory channels. Recording from single neurons in the cochlear nucleus of anesthetized guinea pigs, we show that the neural representation of pitch based on timing information is severely degraded in the presence of reverberation. This degradation increases with both increasing reverberation strength and channel bandwidth. In a parallel human psychophysical pitch-discrimination task, reverberation impaired the ability to distinguish a high-pass harmonic sound from noise. Together, these findings explain the origin of perceptual difficulties experienced by both normal-hearing and hearing-impaired listeners in reverberant spaces.  相似文献   

6.
7.
For a gleaning bat hunting prey from the ground, rustling sounds generated by prey movements are essential to invoke a hunting behaviour. The detection of prey-generated rustling sounds may depend heavily on the time structure of the prey-generated and the masking sounds due to their spectral similarity. Here, we systematically investigate the effect of the temporal structure on psychophysical rustling-sound detection in the gleaning bat, Megaderma lyra. A recorded rustling sound serves as the signal; the maskers are either Gaussian noise or broadband noise with various degrees of envelope fluctuations. Exploratory experiments indicate that the selective manipulation of the temporal structure of the rustling sound does not influence its detection in a Gaussian-noise masker. The results of the main experiment show, however, that the temporal structure of the masker has a strong and systematic effect on rustling-sound detection: When the width of irregularly spaced gaps in the masker exceeded about 0.3 ms, rustling-sound detection improved monotonically with increasing gap duration. Computer simulations of this experiment reveal that a combined detection strategy of spectral and temporal analysis underlies rustling-sound detection with fluctuating masking sounds.  相似文献   

8.
Temporal summation was estimated by measuring the detection thresholds for pulses with durations of 1–50 ms in the presence of noise maskers. The purpose of the study was to examine the effects of the spectral profiles and intensities of noise maskers on temporal summation, to investigate the appearance of signs of peripheral processing of pulses with various frequency-time structures in auditory responses, and to test the opportunity to use temporal summation for speech recognition. The central frequencies of pulses and maskers were similar. The maskers had ripple structures of the amplitude spectra of two types. In some maskers, the central frequencies coincided with the spectrum humps, whereas in other maskers, they coincided with spectrum dip (so-called on- and off-maskers). When the auditory system differentiated the masker humps, then the difference between the thresholds of recognition of the stimuli presented together with each of two types of maskers was not equal to zero. The assessment of temporal summation and the difference of the thresholds of pulse recognition under conditions of the presentation of the on- and off-maskers allowed us to make a conclusion on auditory sensitivity and the resolution of the spectral structure of maskers or frequency selectivity during presentation of pulses of various durations in local frequency areas. In order to estimate the effect of the dynamic properties of hearing on sensitivity and frequency selectivity, we changed the intensity of maskers. We measured temporal summation under the conditions of the presentation of on- and off-maskers of various intensities in two frequency ranges (2 and 4 kHz) in four subjects with normal hearing and one person with age-related hearing impairments who complained of a decrease in speech recognition under noise conditions. Pulses shorter than 10 ms were considered as simple models of consonant sounds, whereas tone pulses longer than 10 ms were considered as simple models of vowel sounds. In subjects with normal hearing in the range of moderate masker intensities, we observed an enhancement of temporal summation when the short pulses or consonant sounds were presented and an improvement of the resolution of the broken structure of masker spectra when the short and tone pulses, i.e., consonant and vowel sounds, were presented. We supposed that the enhancement of the summation was related to the refractoriness of the fibers of the auditory nerve. In the range of 4 kHz, the subject with age-related hearing impairments did not recognize the ripple structure of the maskers in the presence of the short pulses or consonant sounds. We supposed that these impairments were caused by abnormal synchronization of the responses of the auditory nerve fibers induced by the pulses, and this resulted in a decrease in speech recognition.  相似文献   

9.
Real-world sounds like speech or traffic noise typically exhibit spectro-temporal variability because the energy in different spectral regions evolves differently as a sound unfolds in time. However, it is currently not well understood how the energy in different spectral and temporal portions contributes to loudness. This study investigated how listeners weight different temporal and spectral components of a sound when judging its overall loudness. Spectral weights were measured for the combination of three loudness-matched narrowband noises with different center frequencies. To measure temporal weights, 1,020-ms stimuli were presented, which randomly changed in level every 100 ms. Temporal weights were measured for each narrowband noise separately, and for a broadband noise containing the combination of the three noise bands. Finally, spectro-temporal weights were measured with stimuli where the level of the three narrowband noises randomly and independently changed every 100 ms. The data consistently showed that (i) the first 300 ms of the sounds had a greater influence on overall loudness perception than later temporal portions (primacy effect), and (ii) the lowest noise band contributed significantly more to overall loudness than the higher bands. The temporal weights did not differ between the three frequency bands. Notably, the spectral weights and temporal weights estimated from the conditions with only spectral or only temporal variability were very similar to the corresponding weights estimated in the spectro-temporal condition. The results indicate that the temporal and the spectral weighting of the loudness of a time-varying sound are independent processes. The spectral weights remain constant across time, and the temporal weights do not change across frequency. The results are discussed in the context of current loudness models.  相似文献   

10.
Singing with the wings – instrumental sound production in birds Bird wing and tail feathers are able to produce sound in flight and during related movements. Noisy sound is produced primarily as an epiphenomenon to the movements. The sound can, however, also include tonal or harmonic structures and can gain signal value when used in social situations. In a similar way, birds can produce sounds by clattering their keratin covered beaks. For the first time, in this article, the acoustic properties of instrumental bird sounds are analyzed using sonograms. Up to now the biological meaning of instrumental sounds in birds is inferred mainly out of the situations observed.  相似文献   

11.
The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC)--are reviewed, with particular attention to the guinea pig. The selectivity of neuronal responses for individual calls in these auditory centers in the guinea pig is usually low--most neurons respond to calls as well as to artificial sounds; the coding of complex sounds in the central auditory nuclei is apparently based on the representation of temporal and spectral features of acoustical stimuli in neural networks. Neuronal response patterns in the IC reliably match the sound envelope for calls characterized by one or more short impulses, but do not exactly fit the envelope for long calls. Also, the main spectral peaks are represented by neuronal firing rates in the IC. In comparison to the IC, response patterns in the MGB and AC demonstrate a less precise representation of the sound envelope, especially in the case of longer calls. The spectral representation is worse in the case of low-frequency calls, but not in the case of broad-band calls. The emotional content of the call may influence neuronal responses in the auditory pathway, which can be demonstrated by stimulation with time-reversed calls or by measurements performed under different levels of anesthesia. The investigation of the principles of the neural coding of species-specific vocalizations offers some keys for understanding the neural mechanisms underlying human speech perception.  相似文献   

12.
Sounds in the natural environment are non-stationary, in that their spectral dynamics is time-dependent. We develop measures to analyze the spectral dynamics of environmental sound signals and find that they fall into two categories—simple sounds with slowly varying spectral dynamics and complex sounds with rapidly varying spectral dynamics. Based on our results and those from auditory processing we suggest rate of spectral dynamics as a possible scheme to categorize sound signals in the environment.  相似文献   

13.
Sounds in our environment like voices, animal calls or musical instruments are easily recognized by human listeners. Understanding the key features underlying this robust sound recognition is an important question in auditory science. Here, we studied the recognition by human listeners of new classes of sounds: acoustic and auditory sketches, sounds that are severely impoverished but still recognizable. Starting from a time-frequency representation, a sketch is obtained by keeping only sparse elements of the original signal, here, by means of a simple peak-picking algorithm. Two time-frequency representations were compared: a biologically grounded one, the auditory spectrogram, which simulates peripheral auditory filtering, and a simple acoustic spectrogram, based on a Fourier transform. Three degrees of sparsity were also investigated. Listeners were asked to recognize the category to which a sketch sound belongs: singing voices, bird calls, musical instruments, and vehicle engine noises. Results showed that, with the exception of voice sounds, very sparse representations of sounds (10 features, or energy peaks, per second) could be recognized above chance. No clear differences could be observed between the acoustic and the auditory sketches. For the voice sounds, however, a completely different pattern of results emerged, with at-chance or even below-chance recognition performances, suggesting that the important features of the voice, whatever they are, were removed by the sketch process. Overall, these perceptual results were well correlated with a model of auditory distances, based on spectro-temporal excitation patterns (STEPs). This study confirms the potential of these new classes of sounds, acoustic and auditory sketches, to study sound recognition.  相似文献   

14.
《Zoology (Jena, Germany)》2014,117(5):329-336
Many insects exhibit secondary defence mechanisms upon contact with a predator, such as defensive sound production or regurgitation of gut contents. In the tettigoniid Poecilimon ornatus, both males and females are capable of sound production and of regurgitation. However, wing stridulatory structures for intraspecific acoustic communication evolved independently in males and females, and may result in different defence sounds. Here we investigate in P. ornatus whether secondary defence behaviours, in particular defence sounds, show sex-specific differences. The male defence sound differs significantly from the male calling song in that it has a longer syllable duration and a higher number of impulses per syllable. In females, the defence sound syllables are also significantly longer than the syllables of their response song to the male calling song. In addition, the acoustic disturbance stridulation differs notably between females and males as both sexes exhibit different temporal patterns of the defence sound. Furthermore, males use defence sounds more often than females. The higher proportion of male disturbance stridulation is consistent with a male-biased predation risk during calling and phonotactic behaviour. The temporal structures of the female and male defence sounds support a deimatic function of the startling sound in both females and males, rather than an adaptation for a particular temporal pattern. Independently of the clear differences in sound defence, no difference in regurgitation of gut content occurs between the sexes.  相似文献   

15.
Nesting male midshipman fish, Porichthys notatus, emit simple, long-duration sounds known as hums, which are attractive to gravid females. While hums share the multi-harmonic structure typical of many vertebrate communication sounds, their lack of amplitude modulation gives individual hums unusually simple temporal envelopes. However, hums often overlap, producing beats in the summed acoustic waveform. This study presents responses of individual saccular afferent fibers to two-tone harmonic and beat stimuli presented via an underwater loudspeaker. Spike activity was quantified as vector strength of synchronization and average spike rate. Responses to harmonic stimuli depended on harmonic phase; these effects apparently resulted primarily from variation in waveform fine temporal structure rather than auditory non-linearities. At most phases, addition of the harmonic enhanced afferent synchronization compared to the fundamental alone. Two-tone beat stimuli evoked stronger synchronization to the component frequencies than to the beat modulation rate. Vector strength tended to be higher to the lower frequency component, and this pattern appeared to derive from afferent tuning. Midshipman saccular afferents encoded both the temporal envelope and waveform fine structure of these naturalistic signals, information that may be important in conspecific communication.  相似文献   

16.
Animals often vocalize during territorial challenges as acoustic signals may indicate motivation and fighting ability and contribute to reduce aggressive escalation. Here, we tested the function of agonistic sounds in territorial defence in the painted goby. Pomatoschistus pictus, a small vocal marine fish that defends nests during the breeding season. We first measured the number of times a male approached, avoided, explored, entered and exited two unattended nests associated with either conspecific agonistic sounds or a control: silence or white noise. Acoustic stimuli were played back when the male approached a nest. In a second experimental set, we added visual stimuli, consisting of a conspecific male in a small confinement aquarium near each nest. Even though we found no effect of the visual stimuli, the sound playbacks induced similar effects in both experimental conditions. In the sound vs. silence treatment, we found that when males approached a nest, the playback of conspecific sounds usually triggered avoidance. However, this behaviour did not last as in longer periods males visited nests associated with agonistic sounds more often than silent ones. When the control was white noise, we found no significant effect of the playback treatment in male behaviour. Although we cannot exclude the possibility that other sounds may dissuade nest occupation, our results suggest that agonistic sounds act as territorial intrusion deterrents but are insufficient to prevent nest intrusion on their own. Further studies are needed to test the significance of sound production rate, spectral content and temporal patterns to deter territorial intrusion in fish.  相似文献   

17.
SOUND AND ITS SIGNIFICANCE FOR LABORATORY ANIMALS   总被引:1,自引:0,他引:1  
1. Several methods of varying accuracy have been used to assess what sounds small laboratory animals such as rodents are capable of hearing. Most rodents can detect sounds from 1000 Hz (the frequency of the Greenwich Time Signal) up to 100000 Hz, depending on the strain, with usually one or more commonly two peaks of sensitivity within this range. Dogs can detect sound most easily from 500 Hz to 55000 Hz, depending on the breed. 2. Rodents also produce sound signals as a behavioural response and for communication in a variety of situations. Ultrasonic calls in the range 22000–70000 Hz are the main communicating pathway during aggressive encounters, mating, and mothering. Similar calls have also been recorded from isolated animals associated with inactivity, rest and possibly even sleep. 3. Very loud sounds cause seizures in rats and mice, or can make them more susceptible to other sounds later in life. This effect is possible even when animals are fully anaesthetized. Sound tends to startle and reduce activity in several species of animal. Even offspring of mice that have been sound-stressed exhibit abnormal behaviour patterns. Sounds also elicit various responses in rats from increasing aggression to making them more tolerant to electric shocks. 4. Levels of sound above 100 dB are teratogenic in several species of animals and several hormonal, haematological and reproductive parameters are disturbed by sounds above 80 dB. When rats are chemically deafened the disturbance to their fertility disappears. Lipid metabolism is disrupted in rats when exposed to over 95 dB of sounds, leading to increases in plasma triglycerides. Atherosclerosis can be produced in rabbits by similar levels of sound. 5. It has also been shown in guinea pigs and cats that hearing damage is governed by the duration as well as the intensity of the sound and is irreversible. Work on chinchillas hs demonstrated that sounds above 95 dB lead to this injury, but that sounds of 80 dB have no permanent effect on hearing sensitivity.  相似文献   

18.
Nagel KI  Doupe AJ 《Neuron》2008,58(6):938-955
The organization of postthalamic auditory areas remains unclear in many respects. Using a stimulus based on properties of natural sounds, we mapped spectro-temporal receptive fields (STRFs) of neurons in the primary auditory area field L of unanesthetized zebra finches. Cells were sensitive to only a subset of possible acoustic features: nearly all neurons were narrowly tuned along the spectral dimension, the temporal dimension, or both; broadly tuned and strongly orientation-sensitive cells were rare. At high stimulus intensities, neurons were sensitive to differences in sound energy along their preferred dimension, while at lower intensities, neurons behaved more like simple detectors. Finally, we found a systematic relationship between neurons' STRFs, their electrophysiological properties, and their location in field L input or output layers. These data suggest that spectral and temporal processing are segregated within field L, and provide a unifying account of how field L response properties depend on stimulus intensity.  相似文献   

19.
Humans can recognize spoken words with unmatched speed and accuracy. Hearing the initial portion of a word such as "formu…" is sufficient for the brain to identify "formula" from the thousands of other words that partially match. Two alternative computational accounts propose that partially matching words (1) inhibit each other until a single word is selected ("formula" inhibits "formal" by lexical competition) or (2) are used to predict upcoming speech sounds more accurately (segment prediction error is minimal after sequences like "formu…"). To distinguish these theories we taught participants novel words (e.g., "formubo") that sound like existing words ("formula") on two successive days. Computational simulations show that knowing "formubo" increases lexical competition when hearing "formu…", but reduces segment prediction error. Conversely, when the sounds in "formula" and "formubo" diverge, the reverse is observed. The time course of magnetoencephalographic brain responses in the superior temporal gyrus (STG) is uniquely consistent with a segment prediction account. We propose a predictive coding model of spoken word recognition in which STG neurons represent the difference between predicted and heard speech sounds. This prediction error signal explains the efficiency of human word recognition and simulates neural responses in auditory regions.  相似文献   

20.
We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls with a time-locked response to one or more temporal elements of the calls. The neuronal response patterns in the AI correlated well with the sound temporal envelope of chirp (an isolated short phrase), but correlated less well in the case of chutter and whistle (longer calls) or purr (a call with a fast repetition rate of phrases). Neuronal rate vs. characteristic frequency profiles provided only a coarse representation of the calls’ frequency spectra. A comparison between the activity in the AI and those of subcortical structures showed a different transformation of the neuronal response patterns from the IC to the AI for individual calls: i) while the temporal representation of chirp remained unchanged, the representations of whistle and chutter were transformed at the thalamic level and the response to purr at the cortical level; ii) for the wideband calls (whistle, chirp) the rate representation of the call spectra was preserved in the AI and MGB at the level present in the IC, while in the case of low-frequency calls (chutter, purr), the representation was less precise in the AI and MGB than in the IC; iii) the difference in the response strength to natural and time-reversed whistle was found to be smaller in the AI than in the IC or MGB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号