首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Gene frequencies at 20 blood group and protein polymorphism loci ( A, C, D, K, P, Q, U, Al, Tf, Pi, Xk, Es, Gc, PGD, CA, Cat, PGM, AP, Hb and PHI ) are given for seven horse breeds in the United States (Thoroughbred, Arabian, Standard bred, Morgan, Quarter Horse, Paso Fino and Peruvian Paso). These data are used to calculate that the battery of tests is at least 96% effective for recognizing incorrect paternity in these breeds. In addition to paternity testing, these tests can be applied to studies of breed relationships.  相似文献   

2.
In cattle, bovine leukocyte antigens (BoLAs) have been extensively used as markers for diseases and immunological traits. However, none of the highly adapted Latin American Creole breeds have been characterized for BoLA gene polymorphism by high resolution typing methods. In this work, we sequenced exon 2 of the BoLA class II DRB3 gene from 179 cattle (113 Bolivian Yacumeño cattle and 66 Colombian Hartón del Valle cattle breeds) using a polymerase chain reaction sequence-based typing (PCR-SBT) method. We identified 36 previously reported alleles and three novel alleles. Thirty-five (32 reported and three new) and 24 alleles (22 reported and two new) were detected in Yacumeño and Hartón del Valle breeds, respectively. Interestingly, Latin American Creole cattle showed a high degree of gene diversity despite their small population sizes, and 10 alleles including three new alleles were found only in these two Creole breeds. We next compared the degree of genetic variability at the population and sequence levels and the genetic distance in the two breeds with those previously reported in five other breeds: Holstein, Japanese Shorthorn, Japanese Black, Jersey, and Hanwoo. Both Creole breeds presented gene diversity higher than 0.90, a nucleotide diversity higher than 0.07, and mean number of pairwise differences higher than 19, indicating that Creole cattle had similar genetic diversity at BoLA-DRB3 to the other breeds. A neutrality test showed that the high degree of genetic variability may be maintained by balancing selection. The FST index and the exact G test showed significant differences across all cattle populations (FST = 0.0478; p < 0.001). Results from the principal components analysis and the phylogenetic tree showed that Yacumeño and Hartón del Valle breeds were closely related to each other. Collectively, our results suggest that the high level of genetic diversity could be explained by the multiple origins of the Creole germplasm (European, African and Indicus), and this diversity might be maintained by balancing selection.  相似文献   

3.
Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.  相似文献   

4.
To understand the origin and genetic diversity of Iranian native horses, mitochondrial DNA (mtDNA) D‐loop sequences were generated for 95 horses from five breeds sampled in eight geographical locations in Iran. Sequence analysis of a 247‐bp segment revealed a total of 27 haplotypes with 38 polymorphic sites. Twelve of 19 mtDNA haplogroups were identified in the samples. The most common haplotypes were found within haplogroup X2. Within‐population haplotype and nucleotide diversities of the five breeds ranged from 0.838 ± 0.056 to 0.974 ± 0.022 and 0.011 ± 0.002 to 0.021 ± 0.001 respectively, indicating a relatively high genetic diversity in Iranian horses. The identification of several ancient sequences common between the breeds suggests that the lineage of the majority of Iranian horse breeds is old and obviously originated from a vast number of mares. We found in all native Iranian horse breeds lineages of the haplogroups D and K, which is concordant with the previous findings of Asian origins of these haplogroups. The presence of haplotypes E and K in our study also is consistent with a geographical west–east direction of increasing frequency of these haplotypes and a genetic fusion in Iranian horse breeds.  相似文献   

5.
The maternal and paternal genetic variation of horse breeds from the Baltic Sea region, including three local Estonian breeds, was assessed and compared with that of Altai and Yakutian horses. In the mtDNA D‐loop region, 72 haplotypes assigned to 20 haplogroups in the nine breeds were detected. In Estonian local breeds, 38 mtDNA haplotypes were found, and five of them were shared by the three breeds. More than 60% of all identified haplotypes were rare. Compared with the Estonian Native and Estonian Heavy Draught breeds, a higher haplotypic diversity was found in the Tori breed (h = 0.969). Moreover, four haplotypes shared among Finnish and Estonian local horse breeds indicated ancient ancestry, and of these, H30 (haplogroup D3) showed global sharing and genetic links between modern Baltic Sea region and Siberian horses, specifically. The studied breed set showed high variability in maternal inheritance and mixed patterns of the international and native breeds of the Siberian and Baltic regions. No variation was found in paternally inherited markers among horse breeds in the Baltic Sea region.  相似文献   

6.
In order to clarify the historical origin and phylogeographic affinities of Creole cattle matrilineages throughout the American continent, we analysed published D-loop mtDNA sequences (n = 454) from Creole, Iberian and African cattle breeds. The Western European T3 haplogroup was the most common in American Creole cattle (63.6%), followed by the African T1 (32.4%) and the Near Eastern T2 haplogroups (4%). None of the sequences were found in Bos indicus types. Within the African T1 haplogroup there were two subclades, T1a and T1*, whose geographic distribution in America was clearly disjointed. T1a is a highly divergent clade originally reported for Creole cattle from Brazil and the Lesser Antilles, but whose geographic distribution in Africa remains unknown. In contrast, lineages attributable to T1* are restricted in America to the region colonized by the Spaniards. We propose a new hypothesis for the origins of Creole cattle that summarizes all previously published historical and genetic data. While the African T1* fraction in Creole cattle may have arrived in America through the Iberian breeds, the divergent T1a lineages may have been introduced by Portuguese and other European crowns from some unknown, not-yet-sampled African location. Additional molecular studies will be required for pinpointing the specific African regional source.  相似文献   

7.
Manipuri pony is the geographically distant breed of horse from the five recognized horse breeds found in the Indian subcontinent. The phylogenetic relationship of Manipuri pony with the other breeds is unknown. The diversity in the mitochondrial (mt) DNA D-loop region is employed as an important tool to understand the origin and genetic diversification of domestic horses and to examine genetic relationships among breeds around the world. This study was carried out to understand the maternal lineages of Manipuri pony using the 247 bp region of the mtDNA D-loop. The dataset comprised of eleven numbers of self developed sequences of Manipuri pony, 59 and 35 number of retrieved sequences of Indian horse breeds and other worldwide breeds respectively. A total of 35 haplotypes was identified with a high level of genetic diversity in the Indian breeds. A total of seven major mtDNA haplogroups (A–G) was identified in the Indian horse breeds that indicated the abundance of mtDNA diversity and multiple origins of maternal lineages in them. The majority of the studied sequences of Indian breeds (33.3 %) were grouped into haplogroup D and least (3.9 %) in haplogroup E. The Manipuri breed showed the least FST distance (0.03866) with the most diverged Indian breeds and with Thoroughbred horse among the worldwide. This study indicated a close association between Manipuri pony and Thoroughbred.  相似文献   

8.
Genetic diversity in and relationships among 26 Creole cattle breeds from 10 American countries were assessed using 19 microsatellites. Heterozygosities, F-statistics estimates, genetic distances, multivariate analyses and assignment tests were performed. The levels of within-breed diversity detected in Creole cattle were considerable and higher than those previously reported for European breeds, but similar to those found in other Latin American breeds. Differences among breeds accounted for 8.4% of the total genetic variability. Most breeds clustered separately when the number of pre-defined populations was 21 (the most probable K value), with the exception of some closely related breeds that shared the same cluster and others that were admixed. Despite the high genetic diversity detected, significant inbreeding was also observed within some breeds, and heterozygote excess was detected in others. These results indicate that Creoles represent important reservoirs of cattle genetic diversity and that appropriate conservation measures should be implemented for these native breeds in order to minimize inbreeding and uncontrolled crossbreeding.  相似文献   

9.
In the present report, the polymorphisms from 9 microsatellites were used to assess genetic diversity and relationships in 4 Creole cattle breeds from Argentina and Bolivia, 4 European taurine breeds, and 2 American zebu populations. The Creole populations display a relatively high level of genetic variation as estimated by allelic diversity and heterozygosity, whereas the British breeds displayed reduced levels of genetic diversity. The analysis of molecular variance indicated that 7.8% of variance can be explained by differences among taurine and zebu breeds. Consistent with these results, the first principal component (PC), which comprised the 40% of the total variance, clearly distinguishes these 2 groups. In addition, all constructed phylogenetic trees cluster together Nelore and Brahman breeds with robust bootstrap values. Only 1% of variance was due to difference between American Creole and European taurine cattle. Although this secondary split was supported by the classical genetic distance and the second PC (15%), the topology of trees is not particularly robust. The presence of zebu-specific alleles in Creole cattle allowed estimating a moderate degree of zebu admixture. When these data were compared with mitochondrial and Y chromosomal studies, a clear pattern of male-mediated introgression was revealed. The results presented here contribute to the understanding of origin and history of the American Creole cattle.  相似文献   

10.
To obtain more knowledge of the origin and genetic diversity of domestic horses in China, this study provides a comprehensive analysis of mitochondrial DNA (mtDNA) D-loop sequence diversity from nine horse breeds in China in conjunction with ancient DNA data and evidence from archaeological and historical records. A 247-bp mitochondrial D-loop sequence from 182 modern samples revealed a total of 70 haplotypes with a high level of genetic diversity. Seven major mtDNA haplogroups (A–G) and 16 clusters were identified for the 182 Chinese modern horses. In the present study, nine 247-bp mitochondrial D-loop sequences of ancient remains of Bronze Age horse from the Chifeng region of Inner Mongolia in China ( c. 4000–2000a bp ) were used to explore the origin and diversity of Chinese modern horses and the phylogenetic relationship between ancient and modern horses. The nine ancient horses carried seven haplotypes with rich genetic diversity, which were clustered together with modern individuals among haplogroups A, E and F. Modern domestic horse and ancient horse data support the multiple origins of domestic horses in China. This study supports the argument that multiple successful events of horse domestication, including separate introductions of wild mares into the domestic herds, may have occurred in antiquity, and that China cannot be excluded from these events. Indeed, the association of Far Eastern mtDNA types to haplogroup F was highly significant using Fisher's exact test of independence ( P  = 0.00002), lending support for Chinese domestication of this haplogroup. High diversity and all seven mtDNA haplogroups (A–G) with 16 clusters also suggest that further work is necessary to shed more light on horse domestication in China.  相似文献   

11.
Gene frequencies at 20 blood group and protein polymorphism loci (A, C, D, K, P, Q, U, Al, Tf, Pi, Xk, Es, Gc, PGD, CA, Cat, PGM, AP, Hb and PHI) are given for seven horse breeds in the United States (Thoroughbred, Arabian, Standardbred, Morgan, Quarter Horse, Paso Fino and Peruvian Paso). These data are used to calculate that the battery of tests is at least 96% effective for recognizing incorrect paternity in these breeds. In addition to paternity testing, these tests can be applied to studies of breed relationships.  相似文献   

12.

Background

Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions.

Methods

A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity.

Results

Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds.

Conclusions

Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival.  相似文献   

13.
South American horses constitute a direct remnant of the Iberian horses brought to the New World by the Spanish conquerors. The source of the original horses was Spain, and it is generally assumed that the animals belonged to the Andalusian, Spanish Celtic, Barb or Arabian breeds. In order to establish the relationship between Argentinean and Spanish horses, a portion of the mitochondrial D-loop of 104 animals belonging to nine South American and Spanish breeds was analysed using SSCP and DNA sequencing. The variability found both within and between breeds was very high. There were 61 polymorphic positions, representing 16% of the total sequence obtained. The mean divergence between a pair of sequences was 2.8%. Argentinean Creole horses shared two haplotypes with the Peruvian Paso from Argentina, and the commonest haplotype of the Creole horses is identical to one of the Andalusian horses. Even when there was substantial subdivision between breeds with highly significant Wright's Fixation Index (FST), the parsimony and distance-based phylogenetic analyses failed to show monophyletic groups and there was no clear relationship in the trees between the South American and any of the other horses analysed. Although this result could be interpreted as mixed ancestry of the South American breeds with respect to the Spanish breeds, it is probably indicating the retention of very ancient maternal lineages in the breeds analysed.  相似文献   

14.
African-derived mitochondrial DNA (mtDNA) have been described in South American and Caribbean native cattle populations, which could have been introduced into America from Iberia or by direct importation from Africa. However, the similarity among described haplotypes is not known. We examined mtDNA variation in Guadeloupe Creole and Spanish cattle in an attempt to identify African-derived mtDNA haplotypes and compare them with those previously described. Eleven haplotypes clustered into the European taurine haplogroup (T3), two haplotypes into the African taurine (T1) haplogroup, and three haplotypes into the African-derived American haplogroup (AA). The AA1 and Eucons haplotypes were the most frequently observed. The presence of the AA haplogroup in Spanish cattle confirms historical records and genetic evidence of Iberian cattle as the main source of American native cattle origin. The possible origin of African-derived mitochondrial haplotypes in Iberian and Creole cattle is discussed, and the accumulated evidence does not support a founder effect from African ancestral cattle by direct importations. The presence of taurine AA and T3 haplotypes in Brazilian Nellore may indicate introgression by local European-derived cattle. Data presented in this work will contribute to the understanding of the origin of Guadeloupe Creole cattle.  相似文献   

15.
Meadows JR  Cemal I  Karaca O  Gootwine E  Kijas JW 《Genetics》2007,175(3):1371-1379
Archaeozoological evidence indicates that sheep were first domesticated in the Fertile Crescent. To search for DNA sequence diversity arising from previously undetected domestication events, this survey examined nine breeds of sheep from modern-day Turkey and Israel. A total of 2027 bp of mitochondrial DNA (mtDNA) sequence from 197 sheep revealed a total of 85 haplotypes and a high level of genetic diversity. Six individuals carried three haplotypes, which clustered separately from the known ovine mtDNA lineages A, B, and C. Analysis of genetic distance, mismatch distribution, and comparisons with wild sheep confirmed that these represent two additional mtDNA lineages denoted D and E. The two haplogroup E sequences were found to link the previously identified groups A and C. The single haplogroup D sequence branched with the eastern mouflon (Ovis orientalis), urial (O. vignei), and argali (O. ammon) sheep. High sequence diversity (K = 1.86%, haplogroup D and O. orientalis) indicates that the wild progenitor of this domestic lineage remains unresolved. The identification in this study of evidence for additional domestication events adds to the emerging view that sheep were recruited from wild populations multiple times in the same way as for other livestock species such as goat, cattle, and pig.  相似文献   

16.
Family data from Paso Fino horses support the existence of a new allele (Aabdf) in the A system of red cell alloantigens. Considering breeds throughout the world, the A system now consists of 13 alleles defined by reagents which serologically detect seven factors.  相似文献   

17.
Yue XP  Qin F  Campana MG  Liu DH  Mao CC  Wang XB  Lan XY  Chen H  Lei CZ 《Animal genetics》2012,43(5):624-626
Previous mitochondrial DNA (mtDNA) D‐loop and microsatellite studies have shown that Chinese horses have multiple maternal origins and high genetic diversity. To better characterize maternal genetic origins and diversity of Chinese domestic horses, we conducted a comprehensive analysis of 407 complete 1140 bp sequences of the horse mitochondrially encoded cytochrome b (CYTB) gene, including 323 horses from 13 Chinese indigenous breeds and 84 reference sequences from GenBank. A total of 114 haplotypes were identified, of which 73 appeared among the 13 Chinese horse breeds. The high mitochondrially encoded cytochrome b haplotypic diversity suggests multiple maternal origins in Chinese horses.  相似文献   

18.
The objectives of the present experiment were to evaluate a low-density SNP array designed for the molecular characterisation of gene banks and to assess the genetic diversity and population structure of beef cattle herds from an Argentinean research station. Forty-nine animals from three breeds (Angus, Hereford, and Argentinean Creole) were genotyped using the multi-species IMAGE001 60-K SNP array (10 K for cattle). Genotypes of other 19 cattle populations from Argentina, other American countries, and Europe were included in the study. Of special interest was the characterization of the Argentinean Creole, the only autochthonous cattle breed in the country. Due to the merging of different datasets, approximately 5 K SNPs were effectively used. Genetic differentiation (FST), principal component analysis, neighbour-joining tree of Reynolds distances and ancestry analysis showed that autochthonous American breeds are clearly differentiated, but all have genetic influences of Iberian cattle. The analysed herds of Argentinean Creole showed no evidence of recent admixture and represent a unique genetic pool within local American breeds. An experimental herd and the local commercial Hereford population have also diverged, probably due to the influence of current selection objectives in the breed. Our results illustrate the utility of using low-cost, low density SNP arrays in the evaluation of animal genetic resources. This type of panels could become a very useful resource in developing countries, where most endangered cattle breeds are located. The results also reinforce the importance of experimental herds as reservoir of genetic diversity, particularly in the case of local breeds under-represented in traditional production systems.  相似文献   

19.
In Bolivia, four different Creole cattle breeds can be found, as well as other European and Zebu breeds adapted to local environments. The relationship between the occurrence of the 1/29 translocation and subfertility is well known, and analysis of Y chromosome morphology is useful to determine a possible introgression with Bos indicus. The incidence of the 1/29 translocation was analyzed in four Bolivian Creole cattle breeds and the Brahman Yacume?o population, as well as on four farms with phenotypical Creole-type cattle. In 259 (164 dams and 95 sires) Bolivian Creole cattle, 10.42% of the individuals demonstrated the 1/29 translocation, with a variation from 0 to 28.20% between the breeds. In contrast, 43 (19 dams and 24 sires) Yacume?o Brahman and the Creole-type cattle did not show the centric fusion. The highly significant differences between Creole cattle breeds in relation to the incidence of 1/29 translocation could be a consequence of factors such as founder group, genetic drift, and selection. The low frequency observed in the Saavedre?io Creole dairy cattle might be explained by its breeding under a more intensive system, and selection according to milk yield and fertility traits. Finally, no relation between acrocentric Y chromosomes and 1/29 translocation was observed.  相似文献   

20.
We compared the genetic diversity and distance among six German draught horse breeds to wild (Przewalski's Horse), primitive (Icelandic Horse, Sorraia Horse, Exmoor Pony) or riding horse breeds (Hanoverian Warmblood, Arabian) by means of genotypic information from 30 microsatellite loci. The draught horse breeds included the South German Coldblood, Rhenish German Draught Horse, Mecklenburg Coldblood, Saxon Thuringa Coldblood, Black Forest Horse and Schleswig Draught Horse. Despite large differences in population sizes, the average observed heterozygosity (H(o)) differed little among the heavy horse breeds (0.64-0.71), but was considerably lower than in the Hanoverian Warmblood or Icelandic Horse population. The mean number of alleles (N(A)) decreased more markedly with declining population sizes of German draught horse breeds (5.2-6.3) but did not reach the values of Hanoverian Warmblood (N(A) = 6.7). The coefficient of differentiation among the heavy horse breeds showed 11.6% of the diversity between the heavy horse breeds, as opposed to 21.2% between the other horse populations. The differentiation test revealed highly significant genetic differences among all draught horse breeds except the Mecklenburg and Saxon Thuringa Coldbloods. The Schleswig Draught Horse was the most distinct draught horse breed. In conclusion, the study demonstrated a clear distinction among the German draught horse breeds and even among breeds with a very short history of divergence like Rhenish German Draught Horse and its East German subpopulations Mecklenburg and Saxon Thuringa Coldblood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号