首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
To develop a screening kit for detecting mutation hotspots of the phenylalanine hydroxylase (PAH) gene. Thirteen exons of the PAH gene were sequenced in 84 cases with phenylketonuria (PKU) diagnosed during neonatal genetic and metabolic disease screening in Shaanxi province, and their mutations were analyzed. We designed and developed a screening kit to detect nine mutation sites covering more than 50% of the PAH mutations found in Shaanxi province (c.728G>A, c.1197A>T, c.331C>T, c.1068C>A, c.611A>G, c.1238G>C, c.721C>T, c.442-1G>A, and c.158G>A) by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) combined with fluorescent probe technology. Peripheral blood and dried blood samples from PKU families were used for clinical verification of the newly developed kit. PAH gene mutations were detected in 84 children diagnosed with PKU. A total of 159 mutant alleles were identified, consisting of 100 missense mutations, 28 shear mutations, 24 nonsense mutations, and 7 deletion mutations. Exon 7 had the highest mutation frequency (32.08%). Among them, the mutation frequency of p.R243Q was the highest, accounting for 20.13% of all mutations, followed by p.R111X, IVS4-1G>A, EX6-96A>G, and p.R413P; these five loci accounted for 47.17% (75/159) of all mutations. In addition, we identified three previously unreported PAH gene mutations (p.C334X, p.G46D, and p.G256D). Fifteen mutation sites were identified in the 47 PAH carriers identified by next-generation sequencing (NGS), which were verified by the newly developed kit, with an agreement rate of 100%. This newly developed kit based on ARMS-PCR combined with fluorescent probe technology can be used to detect common PAH gene mutations.  相似文献   

2.
宋昉  金煜炜  王红  张玉敏  杨艳玲  张霆 《遗传》2005,27(1):53-56
为探讨中国苯丙酮尿症(PKU)人群中苯丙氨酸羟化酶(PAH)基因外显子7的突变特征,对147例PKU患儿的294个PAH基因外显子7以及两侧部分内含子序列,应用PCR-单链构象多态性(SSCP)分析及基因序列分析的方法进行了筛查和确定。共发现13种突变基因:G239D、R241C、R241fs、R243Q、G247S、G247V、R252Q、L255S、R261Q、M276K、E280G、P281L、Ivs7+2T>A,其中7 种突变基因在中国PKU人群首次发现:G239D 、R241fs 、G247S 、E280G、L255S、R261Q、P281L,前4种在国际上尚未见到报道,并已提交到国际PAH突变数据库(www.pahdb.mcgill.ca)。突变基因的总频率为30.61%(90 /294)。突变涉及了错义、缺失、移码和剪接位点4种突变类型。结果明确了PAH基因外显子7的突变种类和分布等特征,表明外显子7是中国人PAH基因突变的热点区域。 Abstract: To study mutation in exon 7 of the gene for the phenylalanine hydroxylase(PAH), the mutations in exon 7 and flanking sequence of PAH gene were detected by means of SSCP analysis and DNA sequencing, in 147 unrelated Chinese children with phynelketonuria and their parents. Thirteen different mutations, including 11 missense, 1 deletion and 1 splice mutation, were revealed in 90/294 mutant alleles (30.61%). The prevalent mutations were R243Q (22.8%) and Ivs7nt2t->a (2.38%). Seven novel mutations were identified: G239D, R241fsdelG, G247S, E280G, L255S, R261Q, P281L. These new mutations have not been described in Chinese PKU population and the first 4 mutants have not been reported and thus been submitted to www.pahdb,mcgill.ca. The missense was the most common type. The deletion and frameshift mutations were detected for the first time in Chinese PKU population. This study showed the mutation characteristics and their distribution in exon 7 of PAH gene and proved that the exon 7 was the hot region of PAH gene mutation in Chinese PKU population .  相似文献   

3.
We describe a simple and technically feasible method for mutation screening of the phenylalanine hydroxylase (PAH) gene and its application to Japanese and Chinese patients with hyperphenylalaninemia. The strategy is based on the identification of a nucleotide substitution by restriction enzyme analysis, coupled with PCR and direct sequencing of exon 7 of the PAH gene. Because the detection of various mutations can proceed simultaneously using the same technique, it is quite rapid and reproducible, making it possible to perform effective molecular diagnosis and carrier screening in most laboratories. Using this procedure, we found that the most common molecular defects were R413P in Hokkaido, Japan (35 %) and R243Q in Heilongjiang, China (50%). R111X, IVS4nt-1, and five mutations in exon 7 (R241C, R243Q, R252W, A259T, and S273P) accounted for 55% of phenylketonuria (PKU) alleles in Hokkaido. In Heilongjiang, the R111X, Y356X, and R408W mutations accounted for 35% of PKU alleles. Clinically, homozygotes or compound heterozygotes of null alleles, which express nonfunctional enzyme activity, were all associated with classic PKU. On the other hand, patients heterozygous for the R241C allele had a benign phenotype of mild hyperphenylalaninemia. The DNA diagnosis in early infancy can predict various PKU phenotypes, and can prove useful in decision-making concerning dietary therapy.  相似文献   

4.
中国北方人苯丙氨酸羟化酶基因外显子7内新突变的鉴定   总被引:12,自引:0,他引:12  
孙桂凤  姜莉 《遗传学报》1997,24(6):492-495
应用PCR-单链构象多态性分析及DNA直接测序,对45例中国北方苯丙酮尿症(PKU)患者苯丙氨酸羟化酶(PAH)基因外显子7内突变进行了鉴定。共检出6种错义突变及一种静止突变:R243Q.R41H,G247V.L249H.P254I.G257V和V245V。经与国际PAH基因突变数据库比较,确认G257V.P254I和L249H为国际上首次发现的突变。结果揭示,中国人与其他种族及中国北方与南方人群PAH突变特点不同。明确了中国北方人群中PAH基因外显子7基因突变分布,有助于提高PKU的基因诊断率,对基因的起源、进化研究有参考价值  相似文献   

5.
The aim of this study was to characterize the phenylketonuria (PKU) alleles in the Spanish population, by both identifying the causative mutations and analyzing the RFLP haplotypes and the VNTR and short-tandem-repeat alleles associated with the phenylalanine hydroxylase (PAH) gene. We have investigated 129 independent mutant chromosomes, using denaturing gradient gel electrophoresis (DGGE) and direct sequencing. Ninety percent of the alleles were identified, and a total of 40 different mutations were detected. The mutational spectrum includes seven previously unreported mutations: P122Q, D129G, P147S, D151G, A165T, S196fs, and P407S. Seven mutations represent 43% of the Spanish PKU alleles, the most common being IVS10nt-11g-->a (14.7%), I65T (8.5%), and V388M (6.2%). The remaining 33 mutations are rare. The mutation profile and relative frequencies are markedly different from those in northern Europe, also showing unique features compared with those in other, southern European populations. The association analysis with polymorphic markers in the PAH gene provides valuable information for population-genetic studies and investigation of the origins of the mutations. This study may serve as reference in the analysis of the contemporary distributions and frequencies of the PKU mutations in related populations, with particular relevance in Latin American countries.  相似文献   

6.
The spectrum and frequency of mutations of exon 7 of the gene for phenylalanine hydroxylase (PAH) were studied in 34 phenylketonuria (PKU) patients living in Novosibirsk oblast. The five most prevalent mutations constituted 17.64% of defective alleles: R243Q (1.47%), R252W (1.47%), R261Q (5.88%), E280K (1.47%), and P281L (7.35%). A neutral polymorphic locus V245V was found within exon 7.  相似文献   

7.
Molecular characterization of phenylketonuria in Japanese patients   总被引:15,自引:0,他引:15  
We characterized phenylalanine hydroxylase (PAH) genotypes of Japanese patients with phenylketonuria (PKU) and hyperphenylalaninemia (HPA). PKU and HPA mutations in 41 Japanese patients were identified by denaturing gradient gel electrophoresis and direct sequencing, followed by restriction fragment length polymorphism analysis to find a large deletion involving exons 5 and 6. Of 82 mutant alleles, 76 (92%) were genotyped showing 21 mutations. The major mutations were R413P (30.5%), R243Q (7.3%), R241 C (7.3%), IVS4nt-1 (7.3%), T278I (7.3%), E6nt-96A→g (6.1%), Y356X (4.9%), R111X (3.7%), and 442–706delE5/6 (2.4%). Eight new mutations (L52 S, delS70, S70P, Y77X, IVS3nt-1, A132 V, W187 C, and C265Y) and a polymorphism of IVS10nt-14 were detected. In vitro PAH activities of mutant PAH cDNA constructs were determined by a COS cell expression system. Six mutations, viz., R408Q, L52 S, R241 C, S70P, V388 M, and R243Q, had 55%, 27%, 25%, 20%, 16% and 10% of the in vitro PAH activity of normal constructs, respectively. The mean pretreatment phenylalanine concentration (0.83±0.21 mmol/l) of patients carrying the R408Q, R241 C, or L52 S mutation and a null mutation was significantly lower (P<0.0005) than that (1.99±0.65 mmol/l) of patients with both alleles carrying mutations associated with a severe genotype. Simple linear regression analysis showed a correlation between pretreatment phenylalanine concentrations and predicted PAH activity in 29 Japanese PKU patients (y=31.9–1.03x, r=0.59, P<0.0001). Genotype determination is useful in the prediction of biochemical and clinical phenotypes in PKU and can be of particular help in managing patients with this disorder. Received: 24 July 1998 / Accepted: 12 September 1998  相似文献   

8.
Prolidase (E.C.3.4.13.9) cleaves iminodipeptides. Prolidase deficiency (PD; McKusick 170100) is an autosomal recessive disorder with highly variable penetrance. We have identified two novel alleles in the prolidase gene (PEPD) by direct sequencing of PCR-amplified cDNA from a PD individual asymptomatic at age 11 years: a 551G-->A transition in exon 8 (R184Q) and a 833G-->A transition in exon 12 (G278D). To assess the biochemical phenotypes of these and two previously identified PEPD mutations (G448R and delE452), we have designed a transient-expression system for prolidase in COS-1 cells. The enzyme was expressed as a fusion protein carrying an N-terminal tag, the HA1 epitope of influenza hemagglutinin, allowing its immunological discrimination from the endogenous enzyme with a monoclonal antibody. Expression of the R184Q mutation produced 7.4% of control enzymatic activity whereas the expression of the G278D, G448R, and delE452 mutations produced inactive enzymes. Western analysis of the R184Q, G278D, and G448R prolidases revealed stable immunoreactive material whereas the delE452 prolidase was not detectable. Pulse-chase metabolic labeling of cells followed by immunoprecipitation revealed that the delE452 mutant protein was synthesized but had an increased rate of degradation.  相似文献   

9.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

10.
Three novel missense mutations have been identified in the phenylalanine hydroxylase (PAH) genes of Chinese individuals afflicted with various degrees of phenylketonuria (PKU). A T-to-C transition was observed in exon 5 of the gene, resulting in the substitution of Phe161 by Ser161. Two substitutions, G-to-T and T-to-G, were observed in exon 7, resulting in the substitution of Gly247 by Val247 and Leu255 by Val255, respectively. Expression analysis demonstrated that these mutant proteins produced between 0 and 15% of normal PAH enzyme activity. Population screening of a Chinese sample population indicates that these mutations are quite rare, together accounting for only about 4% of all PKU alleles among the Chinese. The P161S and G247V mutations were each present on a single PAH RFLP haplotype 4 chromosome in patients form Northern China, while the L255V mutation was present on chromosomes of both haplotypes 18 and 21 in patients from Southern China. These results suggest that the remaining 30% of uncharacterized PKU alleles in the Chinese population may bear a large number of relatively rare PAH mutations.  相似文献   

11.
Phenylalanine hydroxylase (PAH) deficiency is caused by mutations in the PAH gene (12q22-q24) resulting in a primary deficiency of the PAH enzyme activity, intolerance to the dietary intake of phenylalanine (Phe) and production of the phenylketonuria (PKU) disease. To date there have been no reports on the molecular analysis of PKU in Iranian population. In this study, the states of the PKU disease in terms of prevalence and mutation spectrum among patients reside in the institutions for mentally retarded in Isfahan was investigated. In the first step, 611 out of 1541 patients with PKU phenotype or severe mental retardation were screened for the PKU disease using the Guthrie bacterial inhibition assay (GBIA) followed by HPLC. Among the patients screened 34 (5.56%) were found positive with abnormal serum Phe of above 7mg/dl. In the next step, the presence of 18 common mutations of the PAH gene in 26 of the patients with classical PKU (serum Phe above 20mg/dl) was investigated, using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Of the 52 independent mutant alleles that were analyzed, 34 (65.38%) were genotyped showing 8 mutations as follows: R252W (15.38%), Q232Q (13.46%), R261Q (7.69%), delL364 (7.69%), IVS10-11g>a (5.77%), L333F (5.77%), V245V (5.77%) and S67P (3.85%). The results from this study may serve as a reference to analyze the PKU mutations in other part of Iran, and to establish diagnostic tests for carrier detection and prenatal diagnosis of the PKU disease in Iranian population.  相似文献   

12.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

13.
The aim of this work was to perform genetic analysis on 18 different blood-spot samples collected from neonates detected as hyperphenylalaninemic by Northeastern Italian screening program. DNA was extracted from blood-spots. Exons/introns of PAH gene were amplified by polymerase chain reaction (PCR), and PCR products were purified and sequenced with both forward and reverse primers. The most frequent mutations were IVS12nt1g>a (16.7%) and R408W, P281L and L48S (all together 11.1%). As expected, compound heterozygosity was the usual finding; homozygosity was found only in two patients with R158Q and IVS2nt5g>c mutations. The V230I mutation was reported for the first time in Italy. We found six previously described polymorphisms (V245V, IVS4nt47c>t, IVS2nt19t>c, IVS3nt-22c>t, IVS5nt-54a>g, and E280>Q280). To our knowledge, four genotypes were not previously described: R158Q/V230I present in one patient with classical PKU; and L48S/R408Q, A403V/IVS2nt-13t>g, and G272X/V230I present in patients showing HPA phenotype. Most of the mutations were located in the exons 12 and 7 and in exon/intron 2 (83.3% detection of total mutations in PKU or HPA patients of Northeastern Italy). From a practical viewpoint, the genetic analysis of blood-spots collected on Guthrie cards for neonatal screening for PKU could be a simple method to establish the genotype of neonates. Consequently, the genotype/phenotype correlation could lead to a more accurate diagnosis and prognosis for families.  相似文献   

14.
Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive inherited disorder and may cause sudden unexpected infant death. We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA. In the present study, we confirmed the presence of the same genetic mutation in this patient by amplifying genomic DNA. Molecular analysis was also performed to diagnose another 12 Japanese patients with FBPase deficiency. Four mutations responsible for FBPase deficiency were identified in 10 patients from 8 unrelated families among a total of 13 patients from 11 unrelated families; no mutation was found in the remaining 3 patients from 3 unrelated families. The identified mutations included the mutation reported earlier, with an insertion of one G residue at base 961 in exon 7 (960/961insG) (10 alleles, including 2 alleles in the Japanese family from our previous report [46% of the 22 mutant alleles]), and three novel mutations--a G-->A transition at base 490 in exon 4 (G164S) (3 alleles [14%]), a C-->A transversion at base 530 in exon 4 (A177D) (1 allele [4%]), and a G-->T transversion at base 88 in exon 1 (E30X) (2 alleles [9%]). FBPase proteins with G164S or A177D mutations were enzymatically inactive when purified from E. coli. Another new mutation, a T-->C transition at base 974 in exon 7 (V325A), was found in the same allele with the G164S mutation in one family (one allele) but was not responsible for FBPase deficiency. Our results indicate that the insertion of one G residue at base 961 was associated with a preferential disease-causing alternation in 13 Japanese patients. Our results also indicate accurate carrier detection in eight families (73%) of 11 Japanese patients with FBPase deficiency, in whom mutations in both alleles were identified.  相似文献   

15.
Phenylalanine hydroxylase (PAH) gene mutations were investigated in 23 (46 alleles) unrelated phenylketonuria (PKU) patients in Cukurova region. First, all exons of PAH gene were screened by denaturing high performance liquid chromatography (DHPLC), and then, the suspicious samples were analyzed by direct sequencing technique. Consequently, the following results were obtained: IVS10-11g-->a splicing mutation in 27/46 (58.7%), R261Q mutation in 7/46 (15.2%) and E178G, R243X, R243Q, P281L, Y386C, R408W mutations, each found in the frequency of 2/46 (4.3%). In many countries, Arginine mutations have the highest frequency among PAH gene mutations in PKU patients. Although, CpG dinucleotids are effective in mutations resulting in arginine changes, this finding originated from the studies on the causes of mutations rather than the studies on the importance of arginine amino acid. In our analyses, we have detected that a majority of mutations causing a change in arginine and other amino acids concentrated in exon 7 comprising the catalytic domain (residues 143-410) of PAH gene. Several studies has emphasized the role of arginine amino acid; with the following outcomes; arginine repetition is significant for RNA binding proteins, and for histon proteins in eukaryotic gene expression, and also arginine repetition occurring in the structure of signal recognition particle's (SRPs) as a consequence of post-translational processes is very important in terms of gene expression. Therefore, the role of arginine amino acid in PAH gene is rather remarkable in that it shows the role of amino acids in the protein/RNA interaction that has started in the evolutionary process and is still preserved and maintained in the motif formation of active domain structure due to its strong binding properties. Thus, such properties imply that both arginine amino acid and exon 7 is of great significance with regards to the structure and function of the PheOH enzyme.  相似文献   

16.
Two missense mutations in the phenylalanine hydroxylase (PAH) genes of Orientals with phenylketonuria (PKU) have been identified. A G-to-A transition in exon 7 of the gene results in the substitution of Gln243 for Arg243 (R243Q) and accounts for 18% of all PKU chromosomes among Chinese. An A-to-G transition in exon 6 of the gene results in the substitution of Cys204 for Tyr204 (Y204C) and identifies about 13 and 5% of all PKU chromosomes in the Chinese and Japanese populations, respectively. The R243Q construct produced less than 10% of normal PAH activity in in vitro expression analysis in a eukaryotic cell system, and patients homozygous for this substitution exhibit a severe clinical phenotype. These results are consistent with previous findings in this expression system. The Y204C construct, however, produced near normal levels of PAH enzyme activity and immunoreactivity in this in vitro expression system. Because this substitution is present only on PKU chromosomes, it is a valuable marker for identifying the corresponding mutant allele for carrier screening of PKU. With the characterization of these two substitutions, about 60% of PKU alleles in China can now be identified. The continuing search for additional PKU mutations will permit effective carrier screening and prenatal gene diagnosis of PKU in East Asia.  相似文献   

17.
18.
Virtually all mutations causing Hunter syndrome (mucopolysaccharidosis type II) are expected to be new mutations. Therefore, as a means of molecular diagnosis, we developed a rapid method to sequence the entire iduronate-2-sulfatase (IDS) coding region. PCR amplicons representing the IDS cDNA were sequenced with an automatic instrument, and output was analyzed by computer-assisted interpretation of tracings, using Staden programs on a Sun computer. Mutations were found in 10 of 11 patients studied. Unique missense mutations were identified in five patients: H229Y (685C-->T, severe phenotype); P358R (1073C-->G, severe); R468W (1402C-->T, mild); P469H (1406C-->A, mild); and Y523C (1568A-->G, mild). Non-sense mutations were identified in two patients: R172X (514C-->T, severe) and Q389X (1165C-->T, severe). Two other patients with severe disease had insertions of 1 and 14 bp, in exons 3 and 6, respectively. In another patient with severe disease, the predominant (> 95%) IDS message resulted from aberrant splicing, which skipped exon 3. In this last case, consensus sequences for splice sites in exon 3 were intact, but a 395 C-->G mutation was identified 24 bp upstream from the 3' splice site of exon 3. This mutation created a cryptic 5' splice site with a better consensus sequence for 5' splice sites than the natural 5' splice site of intron 3. A minor population of the IDS message was processed by using this cryptic splice site; however, no correctly spliced message was detected in leukocytes from this patient. The mutational topology of the IDS gene is presented.  相似文献   

19.
20.
T Hamzehloei  SA Hosseini  R Vakili  M Mojarad 《Gene》2012,506(1):230-232

Background

Characterization of the molecular basis of phenylketonuria (PKU) in North-east of Iran has been accomplished through the analysis of 62 unrelated chromosomes from 31 Iranian PKU patients.

Methods

Phenylalanine hydroxylase (PAH) gene mutations have been analyzed by direct DNA sequencing exons 6, 7, 10 and 11.

Results

A mutation detection rate of 74% was achieved. Eleven different mutations were found, with the most frequent mutation, IVS10-11G > A, accounting for 19% of Khorasan-Razavi PKU alleles. Ten mutations (R176X, E280K, IVS11 + 1G > C, S231P, Q383X, R243X, I224T, E390G, R252W and P281L) represent the rest PKU chromosomes. One novel mutation, Q383X in the homozygote form was identified which is located in the catalytic domain (residues143–410).

Conclusion

With this high detection rate of mutations in North-east of Iran, new strategy for carrier testing could be DNA sequencing of these four exons. The other exons and boundaries will be studied only when either one or no mutations are detected in the initial screen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号