首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenylketonuria (PKU) is a widespread autosome recessive hereditary disease caused by a deficiency of the liver enzyme phenylalanine hydroxylase, which results in distortion of metabolism of phenylalanine and accumulation of toxic metabolites. The knowledge of molecular bases of PKU is of a high social importance as it enables phenotypic correction of the disease in the case of its early diagnostics. This disease is known to be associated with mutations in the phenylalanine hydroxylase gene, the distribution and mutation spectrum having pronounced ethnic and regional features. We studied the spectrum of mutations in the phenylalanine hydroxylase gene in a group of patients with PKU from the Novosibirsk region to reveal 10 missense point mutations, 1 mutation in the splice donor site, and 1 microdeletion. For these mutations, most widely distributed in the region, we used straightforward detection methods basing on the restriction fragment length polymorphism (RFLP), artificial constructed restriction sites (ACRS) PCR, and denaturing gradient gel electrophoresis (DGGE).  相似文献   

2.
To develop a screening kit for detecting mutation hotspots of the phenylalanine hydroxylase (PAH) gene. Thirteen exons of the PAH gene were sequenced in 84 cases with phenylketonuria (PKU) diagnosed during neonatal genetic and metabolic disease screening in Shaanxi province, and their mutations were analyzed. We designed and developed a screening kit to detect nine mutation sites covering more than 50% of the PAH mutations found in Shaanxi province (c.728G>A, c.1197A>T, c.331C>T, c.1068C>A, c.611A>G, c.1238G>C, c.721C>T, c.442-1G>A, and c.158G>A) by using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) combined with fluorescent probe technology. Peripheral blood and dried blood samples from PKU families were used for clinical verification of the newly developed kit. PAH gene mutations were detected in 84 children diagnosed with PKU. A total of 159 mutant alleles were identified, consisting of 100 missense mutations, 28 shear mutations, 24 nonsense mutations, and 7 deletion mutations. Exon 7 had the highest mutation frequency (32.08%). Among them, the mutation frequency of p.R243Q was the highest, accounting for 20.13% of all mutations, followed by p.R111X, IVS4-1G>A, EX6-96A>G, and p.R413P; these five loci accounted for 47.17% (75/159) of all mutations. In addition, we identified three previously unreported PAH gene mutations (p.C334X, p.G46D, and p.G256D). Fifteen mutation sites were identified in the 47 PAH carriers identified by next-generation sequencing (NGS), which were verified by the newly developed kit, with an agreement rate of 100%. This newly developed kit based on ARMS-PCR combined with fluorescent probe technology can be used to detect common PAH gene mutations.  相似文献   

3.
4.
To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: “phenylketonuria”, “hyperphenylalaninemia”, and “PKU” in combination with “Iran”, “Iranian population”, “mutation analysis”, and “Molecular genetics”. Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.  相似文献   

5.
Knowledge of hyperphenylalaninemia (HPA) mutational spectrum in a population allows in many cases an accurate prediction of the phenotype and tetrahydrobiopterin (BH4) responsiveness, thus selecting an adequate treatment. In this work, we have performed the molecular characterization of 105 HPA patients from Galicia, in the northwest region of Spain, evaluating their phenotype and BH4 response.  相似文献   

6.
7.
嗜热菌中,蛋白质存在Ala替换Gly以及Arg替换Lys的趋势。为了提高紫色色杆菌来源的苯丙氨酸羟化酶的热稳定性,将该酶中所有Gly突变成Ala,Lys突变成Arg,筛选获得热稳定性提高的突变体,并进行组合突变,对突变酶的酶学性质进行研究。结果表明,突变酶K94R和G221A在50℃的半衰期分别为26.2 min、16.8 min,比原始酶(9.0 min)分别提高了1.9倍、0.9倍,同时组合突变酶K94R/G221A在50℃处理1 h后仍保留65.6%的酶活,比原始酶(8.6%)高出6.6倍。圆二色谱结果显示原始酶和突变酶K94R、G221A及K94R/G221A的T_m值分别为51.5℃、53.8℃、53.1℃和54.8℃。蛋白三维结构模拟推测突变体热稳定性提高机理为:突变体K94R中Arg94与Ile95之间形成额外氢键,稳定其所在的柔性区域;突变体G221A中Ala221与Leu281产生疏水作用,稳定酶分子C-端柔性区。该研究结果为蛋白质热稳定性改造提供了参考,也为苯丙氨酸羟化酶在功能性食品领域的应用奠定了基础。  相似文献   

8.
9.
The uncoupled portion of the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase can be described by the same model as we have recently derived for the fully uncoupled reaction (Davis, M.D. and Kaufman, S. (1989) J. Biol. Chem.264, 8585–8596). Although essentially no hydrogen peroxide is formed during the fully coupled oxidation of tetrahydrobiopterin or 6-methyltetrahydropterin by phenylalanine hydroxylase when phenylalanine is the amino acid substrate, significant amounts of hydrogen peroxide are formed during the partially uncoupled oxidation of 6-methyltetrahydropterin whenpara-fluorophenylalanine orpara-chlorophenylalanine are used in place of phenylalanine. Similarly, during the partially uncoupled oxidation of the unsubstituted pterin, tetrahydropterin, even in the presence of phenylalanine, hydrogen peroxide formation is detected. The 4a-carbinolamine tetrahydropterin intermediate has been observed during the fully uncoupled tyrosine-dependent oxidations of tetrahydropterin and 6-methyltetrahydropterin by lysolecithin-activated phenylalanine hydroxylase, suggesting that this species is also a common intermediate for uncoupled oxidations by this enzyme.Abbreviations BH4 6-[dihydroxypropyl-(L-erythro)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) - 6MPH4 6-methyl-5,6,7,8-tetrahydropterin - PH4 5,6,7,8-tetrahydropterin - BH3OH 4a-hydroxytetrahydropterin (4a-carbinolamine) - qBH2 quinonoid dihydrobiopterin - q6MPH2 quinonoid dihydro-6-methylpterin - qPH2 quinoid dihydropterin - PAH phenylalanine hydroxylase - DHPR dihydropteridine reductase - PHS phenylalanine hydroxylase stimulating enzyme which is 4a-carbinolamine dehydratase - SOD superoxide dismutase - HPLC high performance liquid chromatography - R.T. retention time Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

10.
L T Murthy 《Life sciences》1975,17(12):1777-1783
Inhibitors of phenylalanine hydroxylase and tyrosine hydroxylase were used in the assay of phenylalanine hydroxylase in liver and kidney of rats and mice. Parachlorophenylalanine (PCPA), methyl tyrosine methyl ester and dimethyl tyrosine methyl ester showed 5–15% inhibition while α-methyl tyrosine seemed to inhibit phenylalanine hydroxylase to the extent of 95–98% at concentrations of 5 × 10 −5M –1 × 10 −4M. After a phenylketonuric diet (0.12% PCPA + 3% excess phenylalanine), the liver showed 60% phenylalanine hydroxylase activity and kidney 82% that present in pair-fed normals. Hepatic activity was normal after 8 days refeeding normal diet whereas kidney showed 63% of normal activity. The PCPA-fed animals showed 34% in liver and 38% in kidney as compared to normals; in both cases normal activity was noticed after refeeding. The phenylalanine-fed animals showed activity similar to that seen in phenylketonuric animals. The temporary inducement of phenylketonuria in these animals may be due to a slight change in conformation of the phenylalanine hydroxylase molecule; once the normal diet is resumed, the enzyme reverts back to its active form. This paper also suggests that α-methyl tyrosine when fed in conjunction with the phenylketonuric diet may suppress phenylalanine hydroxylase activity completely in the experimental animals thus yielding normal tyrosine levels as seen in human phenylketonurics.  相似文献   

11.
12.
苯丙氨酸羟化酶(PAH)是芳香族氨基酸羟化酶家族(AAAHs)的一员,催化苯丙氨酸(Phe)转化为酪氨酸(Tyr)。运用Western blotting技术检测沙蚕PAH免疫原性。制作沙蚕头部石蜡切片,运用免疫组织化学技术,检测PAH蛋白表达定位情况。解剖剥离沙蚕脑组织,提取总RNA,运用RT-PCR技术克隆pah基因片段,构建质粒并转化入大肠杆菌中扩增,挑单一均匀菌落培养,双酶切鉴定后测序并比对同源性。Western blotting结果表明pah表达的蛋白存在于沙蚕脑内,免疫组化标记技术结果表明苯丙氨酸羟化酶主要分布在日本刺沙蚕前脑中腹侧、中脑背侧和两侧。RT-PCR结果表明沙蚕脑内存在苯丙氨酸羟化酶基因,且与多种动物pah具有同源性。在蛋白质和核酸水平鉴定了低等环节动物日本刺沙蚕脑组织内苯丙氨酸羟化酶的存在,为进一步研究无脊椎动物中枢神经系统内芳香族氨基酸羟化酶的基因分化奠定基础。  相似文献   

13.
Phenylketonuria (PKU) is a metabolic disorder that results from a deficiency of hepatic phenylalanine hydroxylase (PAH). Identification of the PKU genotype is useful for predicting clinical PKU phenotype. More than 400 mutations resulting in PAH deficiency have been reported worldwide. We used a genedetecting instrument to identify the nine prevalent Japanese mutations in the PAH gene among 31 PKU patients as a preliminary study. This instrument can automatically detect mutations through the use of allele-specific oligonucleotide (ASO) capture probes, and gave results comparable to those of sequencing studies. Each country has uniquely prevalent and specific mutations causing PKU, and less than 50 types of such mutations are generally present in each country. Early genotyping of PKU makes it possible to identify the phenotype and select the optimal therapy for the disease. For early genotyping, the instrumental method described here shortens the time required for genotyping based on mRNA and/or genomic DNA of PKU parents.  相似文献   

14.
宋昉  金煜炜  王红  张玉敏  杨艳玲  张霆 《遗传》2005,27(1):53-56
为探讨中国苯丙酮尿症(PKU)人群中苯丙氨酸羟化酶(PAH)基因外显子7的突变特征,对147例PKU患儿的294个PAH基因外显子7以及两侧部分内含子序列,应用PCR-单链构象多态性(SSCP)分析及基因序列分析的方法进行了筛查和确定。共发现13种突变基因:G239D、R241C、R241fs、R243Q、G247S、G247V、R252Q、L255S、R261Q、M276K、E280G、P281L、Ivs7+2T>A,其中7 种突变基因在中国PKU人群首次发现:G239D 、R241fs 、G247S 、E280G、L255S、R261Q、P281L,前4种在国际上尚未见到报道,并已提交到国际PAH突变数据库(www.pahdb.mcgill.ca)。突变基因的总频率为30.61%(90 /294)。突变涉及了错义、缺失、移码和剪接位点4种突变类型。结果明确了PAH基因外显子7的突变种类和分布等特征,表明外显子7是中国人PAH基因突变的热点区域。 Abstract: To study mutation in exon 7 of the gene for the phenylalanine hydroxylase(PAH), the mutations in exon 7 and flanking sequence of PAH gene were detected by means of SSCP analysis and DNA sequencing, in 147 unrelated Chinese children with phynelketonuria and their parents. Thirteen different mutations, including 11 missense, 1 deletion and 1 splice mutation, were revealed in 90/294 mutant alleles (30.61%). The prevalent mutations were R243Q (22.8%) and Ivs7nt2t->a (2.38%). Seven novel mutations were identified: G239D, R241fsdelG, G247S, E280G, L255S, R261Q, P281L. These new mutations have not been described in Chinese PKU population and the first 4 mutants have not been reported and thus been submitted to www.pahdb,mcgill.ca. The missense was the most common type. The deletion and frameshift mutations were detected for the first time in Chinese PKU population. This study showed the mutation characteristics and their distribution in exon 7 of PAH gene and proved that the exon 7 was the hot region of PAH gene mutation in Chinese PKU population .  相似文献   

15.
Herein we demonstrate that Drosophila larvae possess a synthetic activity capable of converting phenylalanine to tyrosine. This system is readily extractable and displays many characteristics of phenylalanine hydroxylase systems described in other organisms, the most notable being that a tetrahydropteridine is required for full expression of activity. The level of phenylalanine hydroxylase activity present in the organism varies with the stage of development: from an undetected level of activity at the first larval instar, there is a rapid increase in phenylalanine hydroxylase activity which reaches a peak at the time of puparium formation, after which there is a rapid decrease again to an undetected level.  相似文献   

16.
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine, and through phosphorylation by cAMP-dependent protein kinase at Ser16 in the N-terminal autoregulatory sequence of the enzyme. The crystal structures of phosphorylated and unphosphorylated forms of the enzyme showed that, in the absence of phenylalanine, in both cases the N-terminal 18 residues including the phosphorylation site contained no interpretable electron density. We used nuclear magnetic resonance (NMR) spectroscopy to characterize this N-terminal region of the molecule in different stages of the regulatory pathway. A number of sharp resonances are observed in PAH with an intact N-terminal region, but no sharp resonances are present in a truncation mutant lacking the N-terminal 29 residues. The N-terminal sequence therefore represents a mobile flexible region of the molecule. The resonances become weaker after the addition of phenylalanine, indicating a loss of mobility. The peptides corresponding to residues 2-20 of PAH have different structural characteristics in the phosphorylated and unphosphorylated forms, with the former showing increased secondary structure. Our results support the model whereby upon phenylalanine binding, the mobile N-terminal 18 residues of PAH associate with the folded core of the molecule; phosphorylation may facilitate this interaction.  相似文献   

17.
Phenylketonuria is an autosomal recessive inborn error of metabolism resulting from phenylalanine hydroxylase deficiency. Genetic basis of phenylalanine hydroxylase deficiency has been reported in various European and Asian countries with few reports available in Arab populations of the Mediterranean region. This is the first pilot study describing phenotype and genotype of 23 Lebanese patients with phenylketonuria. 48% of the patients presented mainly with neurological signs at a mean age of 2 years 9 months, as newborn screening is not yet a nationwide policy. 56.5% of the patients had classical phenylketonuria. Thirteen different mutations were identified: splice site 52%, frameshift 31%, and missense 17% with no nonsense mutations. IVS10-11G>A was found mainly in Christians at high relative frequency whereas Muslims carried the G352fs and R261Q mutations. A rare splice mutation IVS7+1G>T, not described before, was identified in the homozygous state in one family with moderate phenylketonuria phenotype. Genotype–phenotype correlation using Guldberg arbitrary value method showed high consistency between predicted and observed phenotypes. Calculated homozygosity rate was 0.07 indicating the genetic heterogeneity in our patients. Our findings underline the admixture of different ethnicities and religions in Lebanon that might help tracing back the PAH gene flux history across the Mediterranean region.  相似文献   

18.
双酶电极法测定L-苯丙氨酸的研究   总被引:1,自引:0,他引:1  
本文以Clark氧电极为基础,把水杨酸羟化酶和苯丙氨酸脱氨酶同时固定在氧电极的表面,制成了双酶生物传感器。在磷酸缓冲液中,水杨酸浓度为0.5mmol/L,烟酰胺腺嘌呤二核甘酸(NAD^+)的浓度为1.0mmol/L,其响应电流的变化对应反池中L-苯丙氨酸的浓度在0-0.15mmol/L之内有良好的线性范围。  相似文献   

19.
20.
苯丙酮尿症分子遗传学研究进展   总被引:7,自引:0,他引:7  
张誌  何蕴韶 《遗传》2004,26(5):729-734
苯丙酮尿症是由于苯丙氨酸羟化酶基因突变引起的常染色体隐性遗传病。文章综述了苯丙酮尿症中的苯丙氨酸羟化酶基因的定位、结构、突变、调控以及突变基因的体外表达和苯丙氨酸羟化酶的三维结构特点等分子遗传学进展,阐述了苯丙氨酸羟化酶基因的突变对苯丙氨酸羟化酶的体外表达及其三维结构的影响, 以及部分基因型与表型相关的分子机制。 Abstract: Phenylketonuria(PKU) is one kinds of autusomal recessive disease caused by phenylalanine hydroxylase(PAH) gene mutation. This article reviews the recent molecular heredity progress on the phenylalanine hydroxylase gene’s orientation、structureand gene mutation and gene regulation. At same time, mutation gene in vitro expression and the character of 3D structure of PAH in PKU are involved. In this paper, also discussed the inflence of vitro expression and 3D protein structure by gene mutations and the molecular mechanism of the relationship between genotype and phenotype in PKU patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号