首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
4.
To elucidate the general constraints imposed on the structure of the D- and T-loops in functional tRNAs, active suppressor tRNAs were selected in vivo from a combinatorial tRNA gene library in which several nucleotide positions of these loops were randomized. Analysis of the nucleotide sequences of the selected clones demonstrates that among the randomized nucleotides, the most conservative are nucleotides 54 and 58 in the T-loop. In most cases, they make the combination U54-A58, which allows the formation of the normal reverse Hoogsteen base pair. Surprisingly, other clones have either the combination G54-A58 or G54-G58. However, molecular modeling shows that these purine–purine base pairs can very closely mimic the reverse Hoogsteen base pair U-A and thus can replace it in the T-loop of a functional tRNA. This places the reverse Hoogsteen base pair 54-58 as one of the most important structural aspects of tRNA functionality. We suggest that the major role of this base pair is to preserve the conformation of dinucleotide 59–60 and, through this, to maintain the general architecture of the tRNA L-form.  相似文献   

5.
The TΨC stem and loop (TSL) of tRNA contains highly conserved nucleoside modifications, m5C49, T54, Ψ55 and m1A58. U54 is methylated to m5U (T) by m5U54 methyltransferase (RUMT); A58 is methylated to m1A by m1A58 tRNA methyltransferase (RAMT). RUMT recognizes and methylates a minimal TSL heptadecamer and RAMT has previously been reported to recognize and methylate the 3′-half of the tRNA molecule. We report that RAMT can recognize and methylate a TSL heptadecamer. To better understand the sensitivity of RAMT and RUMT to TSL conformation, we have designed and synthesized variously modified TSL constructs with altered local conformations and stabilities. TSLs were synthesized with natural modifications (T54 and Ψ55), naturally occurring modifications at unnatural positions (m5C60), altered sugar puckers (dU54 and/or dU55) or with disrupted U-turn interactions (m1Ψ55 or m1m3Ψ55). The unmodified heptadecamer TSL was a substrate of both RAMT and RUMT. The presence of T54 increased thermal stability of the TSL and dramatically reduced RAMT activity toward the substrate. Local conformation around U54 was found to be an important determinant for the activities of both RAMT and RUMT.  相似文献   

6.
The T-arm of tRNA is a substrate for tRNA (m5U54)-methyltransferase   总被引:6,自引:0,他引:6  
X R Gu  D V Santi 《Biochemistry》1991,30(12):2999-3002
Fragments of Escherichia coli FUra-tRNA(1Val) as small as 15 nucleotides form covalent complexes with tRNA (m5U54)-methyltransferase (RUMT). The sequence essential for binding includes position 52 of the T-stem and the T-loop and extends toward the 3' acceptor end of FUra-tRNA. The in vitro synthesized 17mer T-arm of E. coli tRNA(1Val), composed of the seven-base T-loop and 5-base-pair stem, is a good substrate for RUMT. The Km is decreased 5-fold and kcat is decreased 2-fold compared to the entire tRNA. The T-arm structure could be further reduced to an 11mer containing the loop and two base pairs and still retain activity; the Km was similar to that of the 17mer T-arm, whereas kcat was decreased an additional 20-fold. The data indicate that the primary specificity determinants for the RUMT-tRNA interaction are contained within the primary and secondary structure of the T-arm of tRNA.  相似文献   

7.
The flavoprotein TrmFO methylates specifically the C5 carbon of the highly conserved uridine 54 in tRNAs. Contrary to most methyltransferases, the 1-carbon unit transferred by TrmFO derives from 5,10-methylenetetrahydrofolate and not from S-adenosyl-L-methionine. The enzyme also employs the FAD hydroquinone as a reducing agent of the C5 methylene U54-tRNA intermediate in vitro. By analogy with the catalytic mechanism of thymidylate synthase ThyA, a conserved cysteine located near the FAD isoalloxazine ring was proposed to act as a nucleophile during catalysis. Here, we mutated this residue (Cys-53 in Bacillus subtilis TrmFO) to alanine and investigated its functional role. Biophysical characterization of this variant demonstrated the major structural role of Cys-53 in maintaining both the integrity and plasticity of the flavin binding site. Unexpectedly, gel mobility shift assays showed that, like the wild-type enzyme, the inactive C53A variant was capable of forming a covalent complex with a 5-fluorouridine-containing mini-RNA. This result confirms the existence of a covalent intermediate during catalysis but rules out a nucleophilic role for Cys-53. To identify the actual nucleophile, two other strictly conserved cysteines (Cys-192 and Cys-226) that are relatively far from the active site were replaced with alanine, and a double mutant C53A/C226A was generated. Interestingly, only mutations that target Cys-226 impeded TrmFO from forming a covalent complex and methylating tRNA. Altogether, we propose a revised mechanism for the m(5)U54 modification catalyzed by TrmFO, where Cys-226 attacks the C6 atom of the uridine, and Cys-53 plays the role of the general base abstracting the C5 proton.  相似文献   

8.
In most organisms, the widely conserved 1-methyl-adenosine58 (m1A58) tRNA modification is catalyzed by an S-adenosyl-L-methionine (SAM)-dependent, site-specific enzyme TrmI. In archaea, TrmI also methylates the adjacent adenine 57, m1A57 being an obligatory intermediate of 1-methyl-inosine57 formation. To study this multi-site specificity, we used three oligoribonucleotide substrates of Pyrococcus abyssi TrmI (PabTrmI) containing a fluorescent 2-aminopurine (2-AP) at the two target positions and followed the RNA binding kinetics and methylation reactions by stopped-flow and mass spectrometry. PabTrmI did not modify 2-AP but methylated the adjacent target adenine. 2-AP seriously impaired the methylation of A57 but not A58, confirming that PabTrmI methylates efficiently the first adenine of the A57A58A59 sequence. PabTrmI binding provoked a rapid increase of fluorescence, attributed to base unstacking in the environment of 2-AP. Then, a slow decrease was observed only with 2-AP at position 57 and SAM, suggesting that m1A58 formation triggers RNA release. A model of the protein–tRNA complex shows both target adenines in proximity of SAM and emphasizes no major tRNA conformational change except base flipping during the reaction. The solvent accessibility of the SAM pocket is not affected by the tRNA, thereby enabling S-adenosyl-L-homocysteine to be replaced by SAM without prior release of monomethylated tRNA.  相似文献   

9.
The Escherichia coli trmA gene encodes the tRNA(m5U54)methyltransferase, which catalyses the formation of m5U54 in tRNA. During the synthesis of m5U54, a covalent 62-kDa TrmA-tRNA intermediate is formed between the amino acid C324 of the enzyme and the 6-carbon of uracil. We have analysed the formation of this TrmA-tRNA intermediate and m5U54 in vivo, using mutants with altered TrmA. We show that the amino acids F188, Q190, G220, D299, R302, C324 and E358, conserved in the C-terminal catalytic domain of several RNA(m5U)methyltransferases of the COG2265 family, are important for the formation of the TrmA-tRNA intermediate and/or the enzymatic activity. These amino acids seem to have the same function as the ones present in the catalytic domain of RumA, whose structure is known, and which catalyses the formation of m5U in position 1939 of E. coli 23S rRNA. We propose that the unusually high in vivo level of the TrmA-tRNA intermediate in wild-type cells may be due to a suboptimal cellular concentration of SAM, which is required to resolve this intermediate. Our results are consistent with the modular evolution of RNA(m5U)methyltransferases, in which the specificity of the enzymatic reaction is achieved by combining the conserved catalytic domain with different RNA-binding domains.  相似文献   

10.
In many prokaryotes the biosynthesis of the amide aminoacyl-tRNAs, Gln-tRNAGln and Asn-tRNAAsn, proceeds by an indirect route in which mischarged Glu-tRNAGln or Asp-tRNAAsn is amidated to the correct aminoacyl-tRNA catalyzed by a tRNA-dependent amidotransferase (AdT). Two types of AdTs exist: bacteria, archaea and organelles possess heterotrimeric GatCAB, while heterodimeric GatDE occurs exclusively in archaea. Bacterial GatCAB and GatDE recognize the first base pair of the acceptor stem and the D-loop of their tRNA substrates, while archaeal GatCAB recognizes the tertiary core of the tRNA, but not the first base pair. Here, we present the crystal structure of the full-length Staphylococcus aureus GatCAB. Its GatB tail domain possesses a conserved Lys rich motif that is situated close to the variable loop in a GatCAB:tRNAGln docking model. This motif is also conserved in the tail domain of archaeal GatCAB, suggesting this basic region may recognize the tRNA variable loop to discriminate Asp-tRNAAsn from Asp-tRNAAsp in archaea. Furthermore, we identified a 310 turn in GatB that permits the bacterial GatCAB to distinguish a U1–A72 base pair from a G1–C72 pair; the absence of this element in archaeal GatCAB enables the latter enzyme to recognize aminoacyl-tRNAs with G1–C72 base pairs.  相似文献   

11.
Transfer RNA structure involves complex folding interactions of the TΨC domain with the D domain. However, the role of the highly conserved nucleoside modifications in the TΨC domain, rT54, Ψ55 and m5C49, in tertiary folding is not understood. To determine whether these modified nucleosides have a role in tRNA folding, the association of variously modified yeast tRNAPhe T-half molecules (nucleosides 40–72) with the corresponding unmodified D-half molecule (nucleosides 1–30) was detected and quantified using a native polyacrylamide gel mobility shift assay. Mg2+ was required for formation and maintenance of all complexes. The modified T-half folding interactions with the D-half resulted in Kds (rT54 = 6 ± 2, m5C49 = 11 ± 2, Ψ55 = 14 ± 5, and rT5455 = 11 ± 3 µM) significantly lower than that of the unmodified T-half (40 ± 10 µM). However, the global folds of the unmodified and modified complexes were comparable to each other and to that of an unmodified yeast tRNAPhe and native yeast tRNAPhe, as determined by lead cleavage patterns at U17 and nucleoside substitutions disrupting the Levitt base pair. Thus, conserved modifications of tRNA’s TΨC domain enhanced the affinity between the two half-molecules without altering the global conformation indicating an enhanced stability to the complex and/or an altered folding pathway.  相似文献   

12.
Translation of the isoleucine codon AUA in most prokaryotes requires a modified C (lysidine or agmatidine) at the wobble position of tRNA2Ile to base pair specifically with the A of the AUA codon but not with the G of AUG. Recently, a Bacillus subtilis strain was isolated in which the essential gene encoding tRNAIle-lysidine synthetase was deleted for the first time. In such a strain, C34 at the wobble position of tRNA2Ile is expected to remain unmodified and cells depend on a mutant suppressor tRNA derived from tRNA1Ile, in which G34 has been changed to U34. An important question, therefore, is how U34 base pairs with A without also base pairing with G. Here, we show (i) that unlike U34 at the wobble position of all B. subtilis tRNAs of known sequence, U34 in the mutant tRNA is not modified, and (ii) that the mutant tRNA binds strongly to the AUA codon on B. subtilis ribosomes but only weakly to AUG. These in vitro data explain why the suppressor strain displays only a low level of misreading AUG codons in vivo and, as shown here, grows at a rate comparable to that of the wild-type strain.  相似文献   

13.
Archaeal Pus10 proteins can produce both pseudouridine 54 and 55 in tRNA   总被引:1,自引:0,他引:1  
Gurha P  Gupta R 《RNA (New York, N.Y.)》2008,14(12):2521-2527
Pus10, a recently identified pseudouridine (Ψ) synthase, does not belong to any of the five commonly identified families of Ψ synthases. Pyrococcus furiosus Pus10 has been shown to produce Ψ55 in tRNAs. However, in vitro studies have identified another mechanism for tRNA Ψ55 production in Archaea, which uses Cbf5 and other core proteins of the H/ACA ribonucleoprotein complex, in a guide RNA-independent manner. Pus10 homologs have been observed in nearly all sequenced archaeal genomes and in some higher eukaryotes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in the tRNAs of Archaea and higher eukaryotes and its absence in yeast and bacteria. No tRNA Ψ54 synthase has been reported so far. Here, using recombinant Methanocaldococcus jannaschii and P. furiosus Pus10, we show that these proteins can function as synthase for both tRNA Ψ54 and Ψ55. The two modifications seem to occur independently. Salt concentration dependent variations in these activities of both proteins are observed. The Ψ54 synthase activity of M. jannaschii protein is robust, while the same activity of P. furiosus protein is weak. Probable reasons for these differences are discussed. Furthermore, unlike bacterial TruB and yeast Pus4, archaeal Pus10 does not require a U54•A58 reverse Hoogstein base pair and pyrimidine at position 56 to convert tRNA U55 to Ψ55. The homology of eukaryal Pus10 with archaeal Pus10 suggests that the former may also have a tRNA Ψ54 synthase activity.  相似文献   

14.
In contrast to all other known tRNAs, mammalian tRNAVal1 contains two adenosines A59 and A60, opposite to U54 and ψ55 in the UψCG sequence of the TψC loop, which could form unusual A:U (or A:ψ) pairs in addition to the five “normal” G:C pairs. In order to measure the number of G:C and A:U (A:ψ) pairs in the TψC stem, we prepared the 30 nucleotide long 3′-terminal fragment of this tRNA by “m7G-cleavage”. From differentiated melting curves and temperature jump experiments it was concluded that the TψC stem in this fragment is in fact extended by an additional A60:U54 pair. A dimer of this fragment with 14 base pairs was characterized by gel electrophoresis and by the same physical methods. An additional A:U pair in the tRNAVal1 fragment does not necessarily mean that this is also true for intact tRNA. However, we showed that U54 is far less available for enzymatic methylation in mammalian tRNAVal1 compared to tRNA from TE. coli. This clear difference in U54 reactivity, together with the identification of an extra A60:U54 pair in the UψCG containing fragment suggests the presence of a 6 base pair TψC stem and a 5 nucleotide TψC loop in this tRNA.  相似文献   

15.
16.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

17.
Nucleic acids are under constant assault from endogenous and environmental agents that alter their physical and chemical properties. O6-methylation of guanosine (m6G) is particularly notable for its high mutagenicity, pairing with T, during DNA replication. Yet, while m6G accumulates in both DNA and RNA, little is known about its effects on RNA. Here, we investigate the effects of m6G on the decoding process, using a reconstituted bacterial translation system. m6G at the first and third position of the codon decreases the accuracy of tRNA selection. The ribosome readily incorporates near-cognate aminoacyl-tRNAs (aa-tRNAs) by forming m6G-uridine codon–anticodon pairs. Surprisingly, the introduction of m6G to the second position of the codon does not promote miscoding, but instead slows the observed rates of peptide-bond formation by >1000-fold for cognate aa-tRNAs without altering the rates for near-cognate aa-tRNAs. These in vitro observations were recapitulated in eukaryotic extracts and HEK293 cells. Interestingly, the analogous modification N6-methyladenosine (m6A) at the second position has only a minimal effect on tRNA selection, suggesting that the effects on tRNA selection seen with m6G are due to altered geometry of the base pair. Given that the m6G:U base pair is predicted to be nearly indistinguishable from a Watson-Crick base pair, our data suggest that the decoding center of the ribosome is extremely sensitive to changes at the second position. Our data, apart from highlighting the deleterious effects that these adducts pose to cellular fitness, shed new insight into decoding and the process by which the ribosome recognizes codon–anticodon pairs.  相似文献   

18.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

19.
The flavoprotein TrmFO catalyzes the C5 methylation of uridine 54 in the TΨC loop of tRNAs using 5,10-methylenetetrahydrofolate (CH(2)THF) as a methylene donor and FAD as a reducing agent. Here, we report biochemical and spectroscopic studies that unravel the remarkable capability of Bacillus subtilis TrmFO to stabilize, in the presence of oxygen, several flavin-reduced forms, including an FADH(?) radical, and a catalytic intermediate endowed with methylating activity. The FADH(?) radical was characterized by high-field electron paramagnetic resonance and electron nuclear double-resonance spectroscopies. Interestingly, the enzyme exhibited tRNA methylation activity in the absence of both an added carbon donor and an external reducing agent, indicating that a reaction intermediate, containing presumably CH(2)THF and FAD hydroquinone, is present in the freshly purified enzyme. Isolation by acid treatment, under anaerobic conditions, of noncovalently bound molecules, followed by mass spectrometry analysis, confirmed the presence in TrmFO of nonmodified FAD. Addition of formaldehyde to the purified enzyme protects the reduced flavins from decay by probably preventing degradation of CH(2)THF. The absence of air-stable reduced FAD species during anaerobic titration of oxidized TrmFO, performed in the absence or presence of added CH(2)THF, argues against their thermodynamic stabilization but rather implicates their kinetic trapping by the enzyme. Altogether, the unexpected isolation of a stable catalytic intermediate suggests that the flavin-binding pocket of TrmFO is a highly insulated environment, diverting the reduced FAD present in this intermediate from uncoupled reactions.  相似文献   

20.
The tRNA:m22G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)—containing N-terminal domain [1–152] and C-terminal catalytic domain [157–329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed. The N-terminal domain was then produced as a standalone protein (THUMPα) and further characterized. This autonomously folded unit exhibits very low affinity for tRNA. Using protein fold-recognition (FR) methods, we identified the similarity between THUMPα and a putative RNA-recognition module observed in the crystal structure of another THUMP-containing protein (ThiI thiolase of Bacillus anthracis). A comparative model of THUMPα structure was generated, which fulfills experimentally defined restraints, i.e. chemical modification of surface exposed residues assessed by mass spectrometry, and identification of an intramolecular disulfide bridge. A model of the whole PAB1283 enzyme docked onto its tRNAAsp substrate suggests that the THUMP module specifically takes support on the co-axially stacked helices of T-arm and acceptor stem of tRNA and, together with the catalytic domain, screw-clamp structured tRNA. We propose that this mode of interactions may be common to other THUMP-containing enzymes that specifically modify nucleotides in the 3D-core of tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号