首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

An accurate diagnosis of helminth infection is important to improve patient management. However, there is considerable intra- and inter-specimen variation of helminth egg counts in human feces. Homogenization of stool samples has been suggested to improve diagnostic accuracy, but there are no detailed investigations. Rapid disintegration of hookworm eggs constitutes another problem in epidemiological surveys. We studied the spatial distribution of Schistosoma mansoni and hookworm eggs in stool samples, the effect of homogenization, and determined egg counts over time in stool samples stored under different conditions.

Methodology

Whole-stool samples were collected from 222 individuals in a rural part of south Côte d''Ivoire. Samples were cut into four pieces and helminth egg locations from the front to the back and from the center to the surface were analyzed. Some samples were homogenized and fecal egg counts (FECs) compared before and after homogenization. The effect of stool storing methods on FECs was investigated over time, comparing stool storage on ice, covering stool samples with a water-soaked tissue, or keeping stool samples in the shade.

Principal Findings

We found no clear spatial pattern of S. mansoni and hookworm eggs in fecal samples. Homogenization decreased S. mansoni FECs (p = 0.026), while no effect was observed for hookworm and other soil-transmitted helminths. Hookworm FECs decreased over time. Storing stool samples on ice or covered with a moist tissue slowed down hookworm egg decay (p<0.005).

Conclusions/Significance

Our findings have important implications for helminth diagnosis at the individual patient level and for epidemiological surveys, anthelmintic drug efficacy studies and monitoring of control programs. Specifically, homogenization of fecal samples is recommended for an accurate detection of S. mansoni eggs, while keeping collected stool samples cool and moist delayed the disintegration of hookworm eggs.  相似文献   

2.

Background

Outbreaks of infectious pancreatic necrosis (IPN) in Atlantic salmon can result in reduced growth rates in a fraction of the surviving fish (runts). Genetic and environmental variation also affects growth rates within different categories of healthy animals and runts, which complicates identification of runts. Mixture models are commonly used to identify the underlying structures in such data, and the aim of this study was to develop Bayesian mixture models for the genetic analysis of health status (runt/healthy) of surviving fish from an IPN outbreak.

Methods

Five statistical models were tested on data consisting of 10 972 fish that died and 3959 survivors with recorded growth data. The most complex models (4 and 5) were multivariate normal-binary mixture models including growth, sexual maturity and field survival traits. Growth rate and liability of sexual maturation were treated as two-component normal mixtures, assuming phenotypes originated from two potentially overlapping distributions, (runt/normal). Runt status was an unobserved binary trait. These models were compared to mixture models with fewer traits (Models 2 and 3) and a classical linear animal model for growth (Model 1).

Results

Assuming growth as a mixture trait improved the predictive ability of the statistical model considerably (Model 2 vs. 1). The final models (4 and 5) yielded the following results: estimated (underlying) heritabilities were moderate for growth in healthy fish (0.32 ± 0.04 and 0.35 ± 0.05), runt status (0.39 ± 0.07 and 0.36 ± 0.08) and sexual maturation (0.33 ± 0.05), and high for field survival (0.47 ± 0.03 and 0.48 ± 0.03). Growth in healthy animals, runt status and survival showed consistent favourable genetic associations. Sexual maturation showed an unfavourable non-significant genetic correlation with runt status, but favourable genetic correlations with other traits. The estimated fraction of healthy fish was 81-85%. The estimated breeding values for runt status and (normal) growth were consistent for the most complex models (4 and 5), but showed imperfect correlations with estimated breeding values from the simpler models.

Conclusions

Modelling growth in IPN survivors as a mixture trait improved the predictive ability of the model compared with a classical linear model. The results indicated considerable genetic variation in health status among survivors. Mixture modelling may be useful for the genetic analysis of diseases detected mainly through indicator traits.  相似文献   

3.

Background

Genotype by environment interactions are currently ignored in national genetic evaluations of dairy cattle. However, this is often questioned, especially when environment or herd management is wide-ranging. The aim of this study was to assess genotype by environment interactions for production traits (milk, protein, fat yields and fat and protein contents) in French dairy cattle using an original approach to characterize the environments.

Methods

Genetic parameters of production traits were estimated for three breeds (Holstein, Normande and Montbéliarde) using multiple-trait and reaction norm models. Variables derived from Herd Test Day profiles obtained after a test day model evaluation were used to define herd environment.

Results

Multiple-trait and reaction norm models gave similar results. Genetic correlations were very close to unity for all traits, except between some extreme environments. However, a relatively wide range of heritabilities by trait and breed was found across environments. This was more the case for milk, protein and fat yields than for protein and fat contents.

Conclusions

No real reranking of animals was observed across environments. However, a significant scale effect exists: the more intensive the herd management for milk yield, the larger the heritability.  相似文献   

4.

Background

Since feed represents 70% of the total cost in poultry production systems, an animal’s ability to convert feed is an important trait. In this study, residual feed intake (RFI) and residual body weight gain (RG), and their linear combination into residual feed intake and body weight gain (RIG) were studied to estimate their genetic parameters and analyze the potential differences in feed intake between the top ranked birds based on the criteria for each trait.

Methods

Phenotypic and genetic analyses were completed on 8340 growing tom turkeys that were measured for feed intake and body weight gain over a four-week period from 16 to 20 weeks of age.

Results

The heritabilities of RG and RIG were 0.19 ± 0.03 and 0.23 ± 0.03, respectively. Residual body weight gain had moderate genetic correlations with feed intake (−0.41) and body weight gain (0.43). All three linear combinations to form the RIG traits had genetic correlations ranging from −0.62 to −0.52 with feed intake, and slightly weaker, 0.22 to 0.34, with body weight gain. Sorted into three equal groups (low, medium, high) based on RG, the most efficient group (high) gained 0.62 and 1.70 kg more (P < 0.001) body weight than that of the medium and low groups, yet the feed intake for the high group was less (P < 0.05) than that of the medium group (19.52 vs. 19.75 kg). When separated into similar partitions, the high RIG group (most efficient) had both the lowest (P < 0.001) feed intake (18.86 vs. 19.57 and 20.41 kg) and the highest (P < 0.001) body weight gain (7.41 vs. 7.03 and 6.43 kg) relative to the medium and low groups, respectively.

Conclusions

The difference in feed intake between the top ranked birds based on different residual feed efficiency traits may be small when looking at the average individual, however, when extrapolated to the production level, the lower feed intake values could lead to significant savings in feed costs over time.  相似文献   

5.

Background

Haemonchosis is a parasitic disease that causes severe economic losses in sheep industry. In recent years, the increasing resistance of the parasite to anthelmintics has raised the need for alternative control strategies. Genetic selection is a promising alternative but its efficacy depends on the availability of genetic variation and on the occurrence of favourable genetic correlations between the traits included in the breeding goal. The objective of this study was twofold. First, to estimate both the heritability of and the genetic correlations between growth traits and parasite resistance traits, using bivariate linear mixed animal models, from the phenotypes and genotypes of 1004 backcross lambs (considered as a single population), which underwent two subsequent experimental infestations protocols with Haemonchus contortus. Second, to compare the precision of the estimates when using two different relationship matrices: including pedigree information only or including also SNP (single nucleotide polymorphism) information.

Results

Heritabilities were low for average daily gain before infestation (0.10 to 0.15) and average daily gain during the first infestation (0.11 to 0.16), moderate for faecal egg counts during the first infestation (0.21 to 0.38) and faecal egg counts during the second infestation (0.48 to 0.55). Genetic correlations between both growth traits and faecal egg count during the naïve infestation were equal to zero but the genetic correlation between faecal egg count during the second infestation and growth was positive in a Haemonchus contortus free environment and negative in a contaminated environment. The standard errors of the estimates obtained by including SNP information were smaller than those obtained by including pedigree information only.

Conclusions

The genetic parameters estimates suggest that growth performance can be selected for independently of selection on resistance to naïve infestation. Selection for increased growth in a non-contaminated environment could lead to more susceptible animals with long-term exposure to the infestation but it could be possible to select for increased growth in a contaminated environment while also increasing resistance to the long-term exposure to the parasite. The use of molecular information increases the precision of the estimates.  相似文献   

6.

Background

Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model.

Methods

We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters.

Results

Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed.

Conclusion

The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.  相似文献   

7.

Background

M. tuberculosis and helminth infection each affects one third of the world population. Helminth infections down regulate cell mediated immune responses and this may contribute to lower efficacy of BCG vaccination and higher prevalence of tuberculosis.

Objective

To determine the effect of maternal helminth infection on maternal and neonatal immune function and immunity to TB.

Methods

In this cross sectional study, eighty five pregnant women were screened for parasitic and latent TB infections using Kato-Katz and QFT-GIT tests, respectively. IFN-γ and IL-4 ELISpot on Cord blood Mononuclear Cells, and total IgE and TB specific IgG ELISA on cord blood plasma was performed to investigate the possible effect of maternal helminth and/or latent TB co-infection on maternal and neonatal immune function and immunity to TB.

Result

The prevalence of helminth infections in pregnant women was 27% (n = 23), with Schistosoma mansoni the most common helminth species observed (20% of women were infected). Among the total of 85 study participants 25.8% were QFT-GIT positive and 17% had an indeterminate result. The mean total IgE value of cord blood was significantly higher in helminth positive than negative women (0.76 vs 0.47, p = 0.042). Cross placental transfer of TB specific IgG was significantly higher in helminth positive (21.9±7.9) than negative (12.3±5.1), p = 0.002) Latent TB Infection positive participants. The IFN-γ response of CBMCs to ESAT-6/CFP-10 cocktail (50 vs 116, p = 0.018) and PPD (58 vs 123, p = 0.02) was significantly lower in helminth positive than negative participants. There was no significant difference in IL-4 response of CBMCs between helminth negative and positive participants.

Conclusions

Maternal helminth infection had a significant association with the IFN-γ response of CBMCs, total IgE and cross placental transfer of TB specific IgG. Therefore, further studies should be conducted to determine the effect of these factors on neonatal immune response to BCG vaccination.  相似文献   

8.

Introduction

We aimed to replicate a recent study which showed higher genetic risk load at 15 loci in men than in women with systemic lupus erythematosus (SLE). This difference was very significant, and it was interpreted as indicating that men require more genetic susceptibility than women to develop SLE.

Methods

Nineteen SLE-associated loci (thirteen of which are shared with the previous study) were analyzed in 1,457 SLE patients and 1,728 healthy controls of European ancestry. Genetic risk load was calculated as sex-specific sum genetic risk scores (GRSs).

Results

Our results did not replicate those of the previous study at either the level of individual loci or the global level of GRSs. GRSs were larger in women than in men (4.20 ± 1.07 in women vs. 3.27 ± 0.98 in men). This very significant difference (P < 10−16) was more dependent on the six new loci not included in the previous study (59% of the difference) than on the thirteen loci that are shared (the remaining 41%). However, the 13 shared loci also showed a higher genetic risk load in women than in men in our study (P = 6.6 × 10−7), suggesting that heterogeneity of participants, in addition to different loci, contributed to the opposite results.

Conclusion

Our results show the lack of a clear trend toward higher genetic risk in one of the sexes for the analyzed SLE loci. They also highlight several limitations of assessments of genetic risk load, including the possibility of ascertainment bias with loci discovered in studies that have included mainly women.  相似文献   

9.

Background

Cryptorchidism and scrotal/inguinal hernia are the most frequent congenital defects in pigs. Identification of genomic regions that control these congenital defects is of great interest to breeding programs, both from an animal welfare point of view as well as for economic reasons. The aim of this genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) that are strongly associated with these congenital defects. Genotypes were available for 2570 Large White (LW) and 2272 Landrace (LR) pigs. Breeding values were estimated based on 1 359 765 purebred and crossbred male offspring, using a binary trait animal model. Estimated breeding values were deregressed (DEBV) and taken as the response variable in the GWAS.

Results

Heritability estimates were equal to 0.26 ± 0.02 for cryptorchidism and to 0.31 ± 0.01 for scrotal/inguinal hernia. Seven and 31 distinct QTL regions were associated with cryptorchidism in the LW and LR datasets, respectively. The top SNP per region explained between 0.96% and 1.10% and between 0.48% and 2.77% of the total variance of cryptorchidism incidence in the LW and LR populations, respectively. Five distinct QTL regions associated with scrotal/inguinal hernia were detected in both LW and LR datasets. The top SNP per region explained between 1.22% and 1.60% and between 1.15% and 1.46% of the total variance of scrotal/inguinal hernia incidence in the LW and LR populations, respectively. For each trait, we identified one overlapping region between the LW and LR datasets, i.e. a region on SSC8 (Sus scrofa chromosome) between 65 and 73 Mb for cryptorchidism and a region on SSC13 between 34 and 37 Mb for scrotal/inguinal hernia.

Conclusions

The use of DEBV in combination with a binary trait model was a powerful approach to detect regions associated with difficult traits such as cryptorchidism and scrotal/inguinal hernia that have a low incidence and for which affected animals are generally not available for genotyping. Several novel QTL regions were detected for cryptorchidism and scrotal/inguinal hernia, and for several previously known QTL regions, the confidence interval was narrowed down.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0096-6) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Between 1994 and 2009, incidence rates of general practitioner (GP) consultations for tick bites and erythema migrans, the most common early manifestation of Lyme borreliosis, have increased substantially in the Netherlands. The current article aims to estimate and validate the incidence of GP-reported Lyme carditis in the Netherlands.

Methods

We sent a questionnaire to all GPs in the Netherlands on clinical diagnoses of Lyme borreliosis in 2009 and 2010. To validate and adjust the obtained incidence rate, medical records of cases of Lyme carditis reported by GPs in this incidence survey were reviewed and categorised according to likelihood of the diagnosis of Lyme carditis.

Results

Lyme carditis occurred in 0.2 % of all patients with GP-reported Lyme borreliosis. The adjusted annual incidence was six GP-reported cases of Lyme carditis per 10 million inhabitants, i.e. approximately ten cases per year in 2009 and 2010.

Conclusions

We report the first incidence estimate for Lyme carditis in the Netherlands, validated by a systematic review of the medical records. Although Lyme carditis is an uncommon manifestation of Lyme borreliosis, physicians need to be aware of this diagnosis, in particular in countries where the incidence of Lyme borreliosis has increased during the past decades.  相似文献   

11.

Background

Infection of livestock with bovine tuberculosis (bTB; Mycobacterium bovis) is of major economical concern in many countries; approximately 15 000 to 20 000 cattle are infected per year in Ireland. The objective of this study was to quantify the genetic variation for bTB susceptibility in Irish dairy and beef cattle.

Methods

A total of 105 914 cow, 56 904 heifer and 21 872 steer single intra-dermal comparative tuberculin test records (i.e., binary trait) collected from the years 2001 to 2010 from dairy and beef herds were included in the analysis. Only animal level data pertaining to periods of herd bTB infection were retained. Variance components for bTB were estimated using animal linear and threshold mixed models and co-variances were estimated using sire linear mixed models.

Results

Using a linear model, the heritability for susceptibility to bTB in the entire dataset was 0.11 and ranged from 0.08 (heifers in dairy herds) to 0.19 (heifers in beef herds) among the sub-populations investigated. Differences in susceptibility to bTB between breeds were clearly evident. Estimates of genetic correlations for bTB susceptibility between animal types (i.e., cows, heifers, steers) were all positive (0.10 to 0.64), yet different from one. Furthermore, genetic correlations for bTB susceptibility between environments that differed in herd prevalence of bTB ranged from 0.06 to 0.86 and were all different from one.

Conclusions

Genetic trends for bTB susceptibility observed in this study suggest a slight increase in genetic susceptibility to bTB in recent years. Since bTB is of economic importance and because all animals are routinely tested at least once annually in Ireland and some other countries, the presence of genetic variation for bTB susceptibility suggests that bTB susceptibility should be included in a national breeding program to halt possible deterioration in genetic susceptibility to bTB infection.  相似文献   

12.

Background

Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence.

Results

By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson’s grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm).

Conclusions

Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1472-x) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle.

Methods

Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (−maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models.

Results and discussion

On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (−maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (−maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence.

Conclusions

For the evaluation of calving traits, multi-trait models show a slight advantage over univariate models. Extended sire models (−maternal grandsire) are more practical and robust than animal models. Estimated genetic parameters for calving traits of UK Holstein cattle are consistent with literature. Calculating an aggregate estimated breeding value including direct and maternal values should encourage breeders to consider both direct and maternal effects in selection decisions.  相似文献   

14.

Background

Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Consequently, COPD patients with chronic bronchitis may have a higher rate of CFTR mutations compared to the general population.

Methods

Primary human bronchial epithelial cells derived from F508del CFTR heterozygotes and mice with (CFTR+/-) and without (CFTR+/+) CFTR heterozygosity were exposed to whole cigarette smoke (WCS); CFTR-dependent ion transport was assessed by Ussing chamber electrophysiology and nasal potential difference measurements, respectively. Caucasians with COPD and chronic bronchitis, age 40 to 80 with FEV1/FVC < 0.70 and FEV1 < 60% predicted, were selected for genetic analysis from participants in the NIH COPD Clinical Research Network’s Azithromycin for Prevention of Exacerbations of COPD in comparison to 32,900 Caucasian women who underwent prenatal genetic testing. Genetic analysis involved an allele-specific genotyping of 89 CFTR mutations.

Results

Exposure to WCS caused a pronounced reduction in CFTR activity in both CFTR (+/+) cells and F508del CFTR (+/-) cells; however, neither the degree of decrement (44.7% wild-type vs. 53.5% F508del heterozygous, P = NS) nor the residual CFTR activity were altered by CFTR heterozygosity. Similarly, WCS caused a marked reduction in CFTR activity measured by NPD in both wild type and CFTR heterozygous mice, but the severity of decrement (91.1% wild type vs. 47.7% CF heterozygous, P = NS) and the residual activity were not significantly affected by CFTR genetic status. Five of 127 (3.9%) COPD patients with chronic bronchitis were heterozygous for CFTR mutations which was not significantly different from controls (4.5%) (P = NS).

Conclusions

The magnitude of WCS induced reductions in CFTR activity was not affected by the presence of CFTR mutation heterozygosity. CFTR mutations do not increase the risk of COPD with chronic bronchitis. CFTR dysfunction due to smoking is primarily an acquired phenomenon and is not affected by the presence of congenital CFTR mutations.  相似文献   

15.

Background

All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Methods

Three models were used: (1) a multi-breed model, in which Alpine and Saanen breeds were considered as a single breed; (2) a within-breed model, with separate genomic evaluation per breed; and (3) a multiple-trait model, in which a trait in the Alpine was assumed to be correlated to the same trait in the Saanen breed, using three levels of between-breed genetic correlations (ρ): ρ = 0, ρ = 0.99, or estimated ρ. Quality of genomic predictions was assessed on progeny-tested bucks, by cross-validation of the Pearson correlation coefficients for validation accuracy and the regression coefficients of daughter yield deviations (DYD) on genomic breeding values (GEBV). Model-based estimates of average accuracy were calculated on the 148 candidates.

Results

The genetic correlations between Alpine and Saanen breeds were highest for udder type traits, ranging from 0.45 to 0.76. Pearson correlations with the single-step approach were higher than previously reported with a two-step approach. Correlations between GEBV and DYD were similar for the three models (within-breed, multi-breed and multiple traits). Regression coefficients of DYD on GEBV were greater with the within-breed model and multiple-trait model with ρ = 0.99 than with the other models. The single-step approach improved prediction accuracy of candidates from 22 to 37% for both breeds compared to the two-step method.

Conclusions

Using a single-step approach with GBLUP, prediction accuracy of candidates was greater than that based on parent average of official evaluations and accuracies obtained with a two-step approach. Except for regression coefficients of DYD on GEBV, there were no significant differences between the three models.  相似文献   

16.

Background

In fish, the most studied production traits in terms of heritability are body weight or growth, stress or disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied. In this study, we have estimated heritabilities of two growth traits (body weight and length) and of cortisol response to confinement stress in the European sea bass.

Findings

The F1 progeny analysed (n = 922) belonged to a small effective breeding population with contributions from an unbalanced family structure of just 10 males and 2 females. Heritability values ranged from 0.54 (±0.21) for body weight to 0.65 (±0.22) for standard body length and were low for cortisol response i.e. 0.08 (±0.06). Genetic correlations were positive (0.94) between standard body length and body weight and negative between cortisol and body weight and between cortisol and standard body length (−0.60 and −0.55, respectively).

Conclusion

This study confirms that in European sea bass, heritability of growth-related traits is high and that selection on such traits has potential. However, heritability of cortisol response to stress is low in European sea bass and since it is known to vary greatly among species, further studies are necessary to understand the reasons for these differences.  相似文献   

17.

Background

Dairy cattle breeding objectives are in general similar across countries, but environment and management conditions may vary, giving rise to slightly different selection pressures applied to a given trait. This potentially leads to different selection pressures to loci across the genome that, if large enough, may give rise to differential regions with high levels of homozygosity. The objective of this study was to characterize differences and similarities in the location and frequency of homozygosity related measures of Jersey dairy cows and bulls from the United States (US), Australia (AU) and New Zealand (NZ).

Results

The populations consisted of a subset of genotyped Jersey cows born in US (n = 1047) and AU (n = 886) and Jersey bulls progeny tested from the US (n = 736), AU (n = 306) and NZ (n = 768). Differences and similarities across populations were characterized using a principal component analysis (PCA) and a run of homozygosity (ROH) statistic (ROH45), which counts the frequency of a single nucleotide polymorphism (SNP) being in a ROH of at least 45 SNP. Regions that exhibited high frequencies of ROH45 and those that had significantly different ROH45 frequencies between populations were investigated for their association with milk yield traits. Within sex, the PCA revealed slight differentiation between the populations, with the greatest occurring between the US and NZ bulls. Regions with high levels of ROH45 for all populations were detected on BTA3 and BTA7 while several other regions differed in ROH45 frequency across populations, the largest number occurring for the US and NZ bull contrast. In addition, multiple regions with different ROH45 frequencies across populations were found to be associated with milk yield traits.

Conclusion

Multiple regions exhibited differential ROH45 across AU, NZ and US cow and bull populations, an interpretation is that locations of the genome are undergoing differential directional selection. Two regions on BTA3 and BTA7 had high ROH45 frequencies across all populations and will be investigated further to determine the gene(s) undergoing directional selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1352-4) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Chronic obstructive pulmonary disease (COPD) is associated with local and systemic inflammation. The knowledge of interaction and co-variation of the inflammatory responses in different compartments is meagre.

Method

Healthy controls (n = 23), smokers with (n = 28) and without (n = 29) COPD performed spirometry and dental examinations. Saliva, induced sputum, bronchoalveolar lavage (BAL) fluid and serum were collected. Inflammatory markers were assessed in all compartments using ELISA, flow cytometry and RT-PCR.

Results

Negative correlations between lung function and saliva IL-8 and matrix metalloproteinase-9 (MMP-9) were found in smokers with COPD. IL-8 and MMP-9 in saliva correlated positively with periodontal disease as assessed by gingival bleeding in non-smokers.Tumor necrosis factor-α (TNF-α) in saliva, serum and TNF-α mRNA expression on macrophages in BAL-fluid were lower in smokers than in non-smokers. There were positive correlations between soluble TNF-α receptor 1 (sTNFR1) and soluble TNF-α receptor 2 (sTNFR2) in sputum, BAL-fluid and serum in all groups. Sputum interleukin-8 (IL-8) or interleukin-6 (IL-6) was positively correlated with sTNFR1 or sTNFR2 in non-smokers and with sTNFR2 in COPD.

Conclusion

Saliva which is convenient to collect and analyse, may be suitable for biomarker assessment of disease activity in COPD. An attenuated TNF-α expression was demonstrated by both protein and mRNA analyses in different compartments suggesting that TNF-α response is altered in moderate and severe COPD. Shedding of TNFR1 or TNFR2 is similarly regulated irrespective of airflow limitation.  相似文献   

19.

Background

To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks.

Results

When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL.

Conclusions

The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.  相似文献   

20.

Background

COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum.

Methods

59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1.

Results

COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages.

Conclusion

Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号