首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Accurate transmission of genetic material relies on the coupling of chromosomes to spindle microtubules by kinetochores. These linkages are regulated by the conserved Aurora B/Ipl1 kinase to ensure that sister chromatids are properly attached to spindle microtubules. Kinetochore–microtubule attachments require the essential Ndc80 complex, which contains two globular ends linked by large coiled-coil domains. In this study, we isolated a novel ndc80 mutant in Saccharomyces cerevisiae that contains mutations in the coiled-coil domain. This ndc80 mutant accumulates erroneous kinetochore–microtubule attachments, resulting in misalignment of kinetochores on the mitotic spindle. Genetic analyses with suppressors of the ndc80 mutant and in vitro cross-linking experiments suggest that the kinetochore misalignment in vivo stems from a defect in the ability of the Ndc80 complex to stably fold at a hinge in the coiled coil. Previous studies proposed that the Ndc80 complex can exist in multiple conformations: elongated during metaphase and bent during anaphase. However, the distinct functions of individual conformations in vivo are unknown. Here, our analysis revealed a tightly folded conformation of the Ndc80 complex that is likely required early in mitosis. This conformation is mediated by a direct, intracomplex interaction and involves a greater degree of folding than the bent form of the complex at anaphase. Furthermore, our results suggest that this conformation is functionally important in vivo for efficient error correction by Aurora B/Ipl1 and, consequently, to ensure proper kinetochore alignment early in mitosis.  相似文献   

3.
Hongbin Wang  Xi Chen  Teng He  Yanna Zhou  Hong Luo 《Genetics》2013,195(4):1291-1306
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.  相似文献   

4.
5.
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal'' clusters in the interphase and mitosis of ~80% of patients'' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.Unlike in vitro cell cultures, cancer cells in patients'' tumor tissues have low mitotic indices and proliferation rates.1 Consequently, drugs targeting mitosis demonstrate limited clinical efficacy, which exposes a fundamental weakness in the rationale underlying their clinical development. By contrast, classical microtubule-targeting agents (MTAs), largely believed to act by perturbing mitosis, remain the mainstay of chemotherapy in the clinic. Given the miniscule population of mitotic cells in patient tumors,2, 3 it stands to reason that MTAs must target interphase.4 This paradigm shift has spurred an intense search for novel interphase targets that combine the ‘ideal'' attributes of cancer-cell selectivity and the ability to confer vulnerability on a large proportion of tumor cells.Centrosomes, the major microtubule-organizing centers (MTOCs) of cells, are required for accurate cell division, cell motility and cilia formation.5 The number of centrosomes within a cell is strictly controlled, and their duplication occurs only once per cell cycle. Nearly all types of cancer cells have abnormal numbers of centrosomes,6, 7, 8 which correlates with chromosomal instability during tumorigenesis.9, 10, 11 Supernumerary centrosomes in cancer cells can cause spindle multipolarity and thus non-viable progeny. Cancer cells avoid this outcome by clustering centrosomes to assemble a pseudo-bipolar mitotic spindle, which yields viable daughter cells.12 Thus disrupting centrosome clustering may selectively drive cancer cells with amplified centrosomes to mitotic catastrophe and apoptosis without affecting normal cells.The fate and interphase role of the supercentrosomal cluster inherited by each daughter cell at the end of a pseudobipolar mitosis is unknown. This is an important research question, because a majority of cells within tumors are in interphase and the centrosomes'' command over microtubule nucleation is crucial for the cellular organization and motility in interphase. If cancer cells cluster centrosomes in interphase, then disrupting the cluster could impact interphase-specific processes, opening up a vital therapeutic avenue. We envision that centrosome declustering would (a) derail interphase-specific polarization and migration processes and (b) precipitate multipolar mitosis culminating in apoptosis. This two-pronged strategy would impact a significantly larger proportion of tumor cells and consign them to death. Our study herein establishes that centrosome-declustering drugs (RedBr-Nos, Griseofulvin and PJ-34) achieve this two-pronged attack as a unique class of agents that exhibit multiple cellular activities.  相似文献   

6.
7.
8.
9.
The Saccharomyces cerevisiae nuclear membrane is part of a complex nuclear envelope environment also containing chromatin, integral and peripheral membrane proteins, and large structures such as nuclear pore complexes (NPCs) and the spindle pole body. To study how properties of the nuclear membrane affect nuclear envelope processes, we altered the nuclear membrane by deleting the SPO7 gene. We found that spo7Δ cells were sickened by the mutation of genes coding for spindle pole body components and that spo7Δ was synthetically lethal with mutations in the SUN domain gene MPS3. Mps3p is required for spindle pole body duplication and for a variety of other nuclear envelope processes. In spo7Δ cells, the spindle pole body defect of mps3 mutants was exacerbated, suggesting that nuclear membrane composition affects spindle pole body function. The synthetic lethality between spo7Δ and mps3 mutants was suppressed by deletion of specific nucleoporin genes. In fact, these gene deletions bypassed the requirement for Mps3p entirely, suggesting that under certain conditions spindle pole body duplication can occur via an Mps3p-independent pathway. These data point to an antagonistic relationship between nuclear pore complexes and the spindle pole body. We propose a model whereby nuclear pore complexes either compete with the spindle pole body for insertion into the nuclear membrane or affect spindle pole body duplication by altering the nuclear envelope environment.THE nuclear envelope is composed of distinct outer and inner nuclear membranes. The outer nuclear membrane is continuous with the endoplasmic reticulum. The inner nuclear membrane is associated with a unique set of proteins, some of which mediate interactions between the nuclear envelope and chromatin (reviewed in Zhao et al. 2009). Nuclear pore complexes traverse both membranes and allow transport of proteins and solutes between the cytoplasm and the nucleus. The inner and outer nuclear membranes fuse in the region surrounding each nuclear pore complex.In animal cells, the nuclear envelope disassembles as cells enter mitosis and reassembles upon mitotic exit. Nuclear envelope breakdown allows the association of chromosomes with spindle microtubules, which are nucleated from centrosomes that reside in the cytoplasm. In contrast, certain types of fungi, such as the budding yeast Saccharomyces cerevisiae, undergo closed mitosis, where the nuclear envelope remains intact throughout the entire cell cycle. Closed mitosis is possible because the yeast centrosome-equivalent, the spindle pole body (SPB), is embedded in the nuclear envelope, allowing the SPB to nucleate both cytoplasmic and nuclear microtubules.SPB duplication requires a mechanism for inserting the new SPB into the nuclear envelope (reviewed in Jaspersen and Winey 2004). The new SPB begins to form in late G1/early S phase as satellite material deposited on the cytoplasmic face of an electron-dense region of the nuclear envelope, called the half-bridge. The satellite material matures into a duplication plaque, which is then inserted into the nuclear membrane and becomes the daughter SPB. Many genes are known to be required for SPB duplication, and this process has been carefully examined cytologically (Rose and Fink 1987; Winey et al. 1991, 1993; Spang et al. 1995; Bullitt et al. 1997; Adams and Kilmartin 1999; Elliott et al. 1999; Schramm et al. 2000; Jaspersen et al. 2002; Nishikawa et al. 2003; Araki et al. 2006). However, the exact mechanisms by which SPB duplication and insertion occur remain a mystery.Equally unclear is how nuclear pore complexes are inserted into an intact nuclear envelope (reviewed in Hetzer and Wente 2009). For both the SPB and nuclear pore complexes, the inner and outer nuclear membranes must fuse to allow insertion into the nuclear envelope. Yeast and vertebrate nuclear pore complexes each have four pore membrane (POM) nucleoporins containing transmembrane domains. Other nucleoporins have motifs with potential for bending membranes or sensing membrane curvature. Thus, certain nuclear pore complex components may have the ability to alter the nuclear membrane or stabilize particular membrane conformations (Devos et al. 2004, 2006; Alber et al. 2007; Drin et al. 2007). It is interesting to note that, in S. cerevisiae, nuclear pore complexes are enriched in the vicinity of the SPB (Heath et al. 1995; Winey et al. 1997; Adams and Kilmartin 1999), but the significance of this phenomenon is not known. The SPB and nuclear pore complexes share at least two common components, the integral membrane protein Ndc1p and the small calcium-binding protein Cdc31p (Chial et al. 1998; Fischer et al. 2004). Ndc1p is thought to play a role in insertion of both SPBs and nuclear pore complexes into the nuclear membrane.SUN domain proteins are a conserved family of inner nuclear membrane proteins that interact with specific outer nuclear membrane proteins to form a physical bridge across the nuclear envelope (reviewed in Hiraoka and Dernburg 2009; Razafsky and Hodzic 2009). One of the components of the S. cerevisiae SPB is the SUN domain protein Mps3p. The N terminus of Mps3p is in the nucleoplasm, while the C terminus, containing the SUN domain, is found in the space between the inner and outer nuclear membranes. In addition to the SPB, Mps3p localizes to multiple foci at the nuclear periphery, and these two pools of Mps3p have distinct functions (Jaspersen et al. 2002, 2006; Nishikawa et al. 2003). At the SPB, Mps3p is required for half-bridge formation and early steps of SPB duplication, and cells compromised for Mps3p function accumulate in mitosis with a single SPB and a monopolar spindle (Jaspersen et al. 2002; Nishikawa et al. 2003). At the nuclear periphery, Mps3p is involved in tethering telomeres to the nuclear envelope in mitosis and meiosis, sequestering DNA double-strand breaks away from recombination factors, and associating with soluble chromatin proteins (Antoniacci et al. 2004, 2007; Bupp et al. 2007; Conrad et al. 2007, 2008; Oza et al. 2009; Schober et al. 2009).While many structural features of the yeast nucleus have been identified, little is known about how the physical properties of the nuclear membrane contribute to processes that occur at the nuclear envelope. As noted above, resident proteins of the nuclear envelope may affect nuclear membrane properties. In addition, the nuclear membrane is affected by altering lipid biosynthesis, for example, by inactivating the phosphatidic acid (PA) phosphohydrolase Pah1p or by inactivating the phosphates complex, made of Spo7p and Nem1p, which activates Pah1p. In the absence of Spo7p, Nem1p, or Pah1p, cells exhibit nuclear envelope extensions and extensive ER membrane sheets, and they also have altered membrane lipid composition, including a decrease in phosphatidylcholine and an increase in PA, phosphatidylethanolamine, and phosphatidylinositol (Siniossoglou et al. 1998; Santos-Rosa et al. 2005; Campbell et al. 2006; Han et al. 2006). These three proteins are unique among phospholipid biosynthesis proteins in their ability to affect nuclear morphology upon gene disruption (Han et al. 2008). A similar phenotype was seen upon overexpression of DGK1, which counteracts the activity of Pah1p by converting diacylglycerol to PA, leading to an increase in PA levels at the nuclear envelope (Han et al. 2008). Consistent with a conserved role for Pah1p in regulating nuclear envelope processes, deletion of either NEM1 or SPO7 is synthetically lethal with deletions of certain nucleoporin genes (Siniossoglou et al. 1998), and inactivation of the PAH1 homolog in Caenorhabditis elegans, LPIN-1, results in defects in nuclear envelope disassembly and reassembly (Golden et al. 2009; Gorjanacz and Mattaj 2009).To identify processes that are affected by altered nuclear membrane properties, we screened for pathways that are compromised in spo7Δ cells. We found that SPO7 inactivation strongly influences the SPB. By screening for proteins that could alleviate spo7Δ-induced SPB defects, we uncovered an unexpected inhibitory role for nucleoporins in SPB function, revealing that nuclear pore complexes, or components thereof, act antagonistically to the SPB in the nuclear envelope. Taken together, our findings indicate that the nuclear envelope environment is important for the function of protein complexes and biological processes occurring at the nuclear periphery.  相似文献   

10.
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly elucidated. To identify genes involved in this process, we performed a genome-wide RNAi screen using sex-specifically expressed gonadal GFP reporters. This screen identified several phenotypic classes, including ∼70 genes whose depletion feminized male gonadal cells. Among the genes required for male cell fate specification are Wnt/β-catenin pathway members, cell cycle regulators, and genes required for mitotic spindle function and cytokinesis. We find that a Wnt/β-catenin pathway independent of extracellular Wnt ligand is essential for asymmetric cell divisions and male differentiation during gonadal development in larvae. We also find that the cell cycle regulators cdk-1 and cyb-3 and the spindle/cytokinesis regulator zen-4 are required for Wnt/β-catenin pathway activity in the developing gonad. After sex is determined in the gonadal primordium the global sex determination pathway is dispensable for gonadal sexual fate, suggesting that male cell fates are promoted and maintained independently of the global pathway during this period.THE Caenorhabditis elegans gonad derives from a simple primordium of four cells that coalesces during embryogenesis and contains two somatic gonad precursors (SGPs), Z1 and Z4, flanking two germline precursors, Z2 and Z3 (Kimble and Hirsh 1979). The SGPs undergo very different developmental programs in each sex, involving sexually dimorphic cell lineages and migrations and sex-specific cellular differentiation. The result is a two-armed bilaterally symmetrical gonad in the adult hermaphrodite or a single-armed asymmetric gonad in the adult male. The high degree of sexual dimorphism of the mature organ and variety of cellular events that occur sex specifically during its development make the C. elegans gonad an outstanding model for sex-specific organogenesis.Development of the somatic gonad occurs in two phases. The early phase defines the gonadal axes and establishes the precursors of the major gonadal cell types. This takes place during the first larval stage (L1), beginning shortly after hatching with the first division of the SGPs. In both sexes SGP division is asymmetric in terms of both the sizes and the fates of the daughter cells, and establishes the proximal/distal axis of the gonad (Hirsh et al. 1976; Kimble and Hirsh 1979). The global sex determination pathway establishes the future sex of the gonad around the time of hatching (Klass et al. 1976; Nelson et al. 1978), and sexual dimorphism is already apparent when the SGPs divide: the size asymmetry of the SGP daughters is much more pronounced in males than hermaphrodites. In both sexes the asymmetry of the first SGP division requires a Wnt/β-catenin pathway. Mutations compromising this pathway cause a “symmetrical sisters” phenotype in which both daughters adopt the same fate (Miskowski et al. 2001; Siegfried and Kimble 2002; Phillips and Kimble 2009). Sex specificity is imposed on the SGPs by the global sex determining gene tra-1 (Hodgkin 1987) and the gonad-specific sex determining gene fkh-6 (Chang et al. 2004). These genes play opposing roles in SGP sex determination, with tra-1 feminizing and fkh-6 masculinizing the somatic gonad, and they also act redundantly to promote mitotic proliferation of the SGP lineage (Chang et al. 2004). SGP sex determination is linked to cell cycle progression by cyclin D, which is required to overcome repression of fkh-6 expression in the SGPs by E2F (Tilmann and Kimble 2005).The later phase of gonadal development involves the elongation of the gonad, together with cellular proliferation and differentiation, and lasts from L2 to adulthood. During L2 the somatic cells enlarge and leader cells (distal tip cells in the hermaphrodite, linker cell in the male) begin long-range migrations that extend the gonad. During L3, somatic gonad cell division resumes in both sexes, leading to the formation of differentiated somatic cell types by the end of L3 or beginning of L4. Gonadal morphogenesis is completed and gametogenesis begins during L4 (Kimble and Hirsh 1979).Although SGP division and much of hermaphrodite gonadal development have been well studied (Hubbard and Greenstein 2000), sexual cell fate specification in the somatic gonad is more poorly understood, particularly after the L1 stage. Despite the importance of fkh-6 in promoting male differentiation, it is expressed in males only during early L1 and null mutants have incomplete gonadal sex reversal. We have therefore performed a genome-wide RNAi screen to identify additional genes required after hatching for gonadal development in each sex. Among the advantages of this approach is the ability to identify gonadal regulators that also are essential for embryonic development. To our knowledge this is the first functional genomic study of gonadal sex differentiation.The screen identified many genes whose depletion disrupts gonadogenesis in each sex and nearly 70 genes whose depletion causes gonadal feminization in males. Prominent among this latter class were components of a Wnt/β-catenin pathway, cell cycle regulators, and genes involved in mitotic spindle function and cytokinesis. We find that Wnt/β-catenin activity continues in both sexes after SGP division and is required for male cell fate commitment in the gonad. We also find that the cyclin-dependent kinase cdk-1 and its cognate cyclin cyb-3 as well as the mitotic spindle regulator zen-4 are required for gonadal Wnt/β-catenin pathway activity, providing a potential new link between the cell cycle, asymmetric division, and sexual differentiation. The feminization caused by depletion of Wnt/β-catenin pathway components or cdk-1 is independent of the global sex determination pathway, suggesting that sexual fates in the male gonad remain plastic after the primary sex determination decision.  相似文献   

11.
12.
Aurora-A is a conserved kinase implicated in mitotic regulation and carcinogenesis. Aurora-A was previously implicated in mitotic entry and spindle assembly, although contradictory results prevented a clear understanding of the roles of Aurora-A in mammals. We developed a conditional null mutation in the mouse Aurora-A gene to investigate Aurora-A functions in primary cells ex vivo and in vivo. We show here that conditional Aurora-A ablation in cultured embryonic fibroblasts causes impaired mitotic entry and mitotic arrest with a profound defect in bipolar spindle formation. Germ line Aurora-A deficiency causes embryonic death at the blastocyst stage with pronounced cell proliferation failure, mitotic arrest, and monopolar spindle formation. Aurora-A deletion in mid-gestation embryos causes an increase in mitotic and apoptotic cells. These results indicate that murine Aurora-A facilitates, but is not absolutely required for, mitotic entry in murine embryonic fibroblasts and is essential for centrosome separation and bipolar spindle formation in vitro and in vivo. Aurora-A deletion increases apoptosis, suggesting that molecular therapies targeting Aurora-A may be effective in inducing tumor cell apoptosis. Aurora-A conditional mutant mice provide a valuable system for further defining Aurora-A functions and for predicting effects of Aurora-A therapeutic intervention.The equal partitioning of chromosomes at mitosis is critical for avoiding aneuploidy, a condition associated with spontaneous miscarriage, developmental disorders, and cancer (50). Mitosis requires coordinated completion of multiple events including nuclear envelope breakdown, chromosome condensation and congression to the metaphase plate, centrosome separation, spindle formation, chromosome-spindle attachment and error correction, sister chromatid separation, and cytokinesis. Multiple regulators, many of which are kinases, are required to ensure that each event is completed in a timely fashion and in the proper order (reviewed in reference 46). Although a number of mitotic kinases have been identified, their targets and the intricacies of mitotic signal transduction pathways are just beginning to be understood.The Aurora kinases are key mitotic regulators in eukaryotes (reviewed in reference 45). The Aurora family includes a single member in yeasts (Saccharomyces cerevisiae Ipl1p, Schizosaccharomyces pombe Ark1), two members each in Caenorhabditis elegans and Drosophila, and two or three members in vertebrates. Although originally given a variety of names, Aurora kinases in multicellular eukaryotes have subsequently been classified into A, B, and C groups based on patterns of mitotic subcellular localization and homology, which also appear to reflect functional distinctions (8, 46). Aurora-A kinases are observed at centrosomes and adjacent spindle fibers, and current evidence supports key roles in regulating protein localization and function at centrosomes, as well as regulation of the assembly, stability, and function of the mitotic spindle (reviewed in reference 43). Aurora-B kinases display “chromosomal passenger” localization, residing on mitotic chromosomes and subsequently moving to the spindle midzone after separation of sister chromatids. Aurora-B family members have been implicated in the regulation of kinetochore-spindle attachment, the spindle checkpoint, and cytokinesis (reviewed in references 1 and 8). Aurora-C kinases, which have only been identified in mammals, have a limited expression pattern and appear to have functions that overlap those of Aurora-B (7, 53).The human Aurora-A kinase (hAurA) was first identified because of its overexpression in cancer cell lines (5, 58). The hAurA gene (stk15) resides on chromosome 20q13, a region frequently amplified in human cancers (5, 58). hAurA has been dubbed an oncogene because of the fact that its overexpression transforms immortalized rodent fibroblasts (5, 70). Polymorphisms in hAurA are associated with an increased risk of colon cancer, while murine AurA (mAurA) polymorphisms confer increased susceptibility to experimentally induced skin tumors (14). The mAurA gene is frequently amplified in radiation-induced lymphomas from p53 heterozygous mice, while loss of one mAurA allele has been observed in lymphomas from p53-null mice (41). Thus, aberrant AurA expression is associated with tumorigenesis, suggesting that insight into AurA functions will lead to a better understanding of tumorigenesis mechanisms.A number of experimental observations suggest that AurA kinases are required for normal centrosome maturation and bipolar spindle assembly. The AurA ortholog in Drosophila melanogaster (Aurora) was identified in a screen for mutations that impact the centrosome cycle (21). Syncytial embryos from hypomorphic Aurora mutant females display a variety of mitotic abnormalities resulting from a failure to separate centrosomes. Aurora-null flies die at the larval stage with characteristic monopolar spindles and circular chromosome arrays in larval neuroblasts. Such monopolar spindles arise from failed centrosome separation (21). Subsequent studies of Drosophila Aurora mutant alleles revealed additional defects in centrosome maturation (including a failure to localize transforming acidic coiled-coil protein, centrosomin, and γ-tubulin at centrosomes) and in asymmetric localization of Numb protein in sensory organ precursor cells (3, 17). Similar to the case in Drosophila, disruption of the C. elegans AurA ortholog AIR-1 by RNA interference (RNAi) or mutation causes defects in centrosome maturation and monopolar spindle formation. Centrosomes undergo normal separation but collapse, leading to monopolar spindle formation (16, 24, 56). Studies of the Xenopus AurA homolog pEg2 revealed similar phenotypes after overexpression of kinase-dead mutants, antibody-mediated inhibition, or immunodepletion (18, 19, 38, 52). Furthermore, Xenopus AurA has been shown to interact with and phosphorylate Eg5, a mitotic kinesin required for bipolar spindle formation, suggesting a possible mechanism by which AurA could influence bipolar spindle formation and/or stabilization (19). Thus, existing reports from these systems are quite consistent in implicating AurA in centrosome separation and function.In contrast to the systems described above, published reports of RNAi-mediated reduction of AurA expression in mammalian cell lines have contained conflicting results about the role of AurA in mitotic entry, bipolar spindle formation, and mitotic progression. AurA RNAi in HeLa cells was reported to block or delay mitotic entry, prompting the conclusion that AurA is essential for mitotic commitment in mammalian cells (27, 36). In contrast, other AurA RNAi studies showed accumulation of mitotic cells with monopolar spindles (12, 20, 67). These discrepancies call into question the functional conservation of AurA in mammals and highlight a need for additional studies to definitively address the roles of AurA. This is particularly critical for understanding the roles of AurA in cancer and for projecting possible effects of AurA inhibitors currently in development as anticancer agents. We used gene targeting in mouse embryonic stem (ES) cells to produce a conditional null allele at the AurA locus. Here we describe cellular phenotypes of AurA deletion in primary cells in vitro and developmental phenotypes of AurA mutant mice. We show that AurA deletion in primary embryonic fibroblasts causes delayed mitotic entry with accumulation of cells in early prophase, consistent with a role for AurA in mitotic entry. Nevertheless, AurA-deficient cells that enter prometaphase arrest with monopolar spindles and eventually exit mitosis without segregating their chromosomes. Prolonged culture of AurA-deficient cells leads to polyploidy with abnormal nuclear structure. Germ line AurA deficiency causes embryonic death at the blastocyst stage with mitotic arrest and monopolar spindle formation, while AurA deletion in mid-gestation embryos causes an increased mitotic index and increased apoptosis. Together, our findings indicate that AurA is required for timely mitotic entry and bipolar spindle formation in vitro and in vivo.  相似文献   

13.
MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue.

Availability

http://lghm.ufpa.br/targetcompare  相似文献   

14.
Cytological observations have shown that the presence of unstable minichromosomes can delay progression through the early stages of mitosis in fission yeast (Schizosaccharomyces pombe), suggesting that such minichromosomes may provide a useful tool for examining the system that regulates the coordinated segregation of chromosomes. One such unstable minichromosome is a large circular minichromosome. We previously showed that the mitotic instability of this minichromosome is probably due to the frequent occurrence of catenated forms of DNA after replication. To identify genes involved in the regulation of chromosome behavior in mitosis, we isolated mutants which stabilized this minichromosome. Three loci (stal, sta2, and sta3) were identified. Two of them were found to be suppressors of temperature-sensitive mutations in cdc2, which encodes the catalytic subunit of muturation promoting factor (MPF). They show no linkage to, and are thus different from, sucl, and cdc13, previously identified as genes that interact with cdc2. The other mutation mapped to a gene previously identified as being required for the correct formation of the mitotic spindle. Data provided in this study suggest that the sta genes are involved in the regulation of spindle dynamics to ensure proper chromosome segregation during mitosis.  相似文献   

15.
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.  相似文献   

16.
17.
Although evolutionary changes must take place in neural connectivity and synaptic architecture as nervous systems become more complex, we lack understanding of the general principles and specific mechanisms by which these changes occur. Previously, we found that morphology of the larval neuromuscular junction (NMJ) varies extensively among different species of Drosophila but is relatively conserved within a species. To identify specific genes as candidates that might underlie phenotypic differences in NMJ morphology among Drosophila species, we performed a genetic analysis on one of two phenotypic variants we found among 20 natural isolates of Drosophila melanogaster. We discovered genetic polymorphisms for both positive and negative regulators of NMJ growth segregating within the variant line. Focusing on one subline, that displayed NMJ overgrowth, we mapped the phenotype to Mob2 [Monopolar spindle (Mps) one binding protein 2)], a gene encoding a Nuclear Dbf2 (Dumbbell formation 2)-Related (NDR) kinase activator. We confirmed this identification by transformation rescue experiments and showed that presynaptic expression of Mob2 is necessary and sufficient to regulate NMJ growth. Mob2 interacts in a dominant, dose-dependent manner with tricornered but not with warts, to cause NMJ overgrowth, suggesting that Mob2 specifically functions in combination with the former NDR kinase to regulate NMJ development. These results demonstrate the feasibility and utility of identifying genetic variants affecting NMJ morphology in natural populations of Drosophila. These variants can lead to discovery of new genes and molecular mechanisms that regulate NMJ development while also providing new information that can advance our understanding of mechanisms that underlie nervous system evolution.  相似文献   

18.
Mutations in adenomatous polyposis coli (APC) protein is a major contributor to tumor initiation and progression in several tumor types. These mutations affect APC function in the Wnt-β-catenin signaling and influence mitotic spindle anchoring to the cell cortex and orientation. Here we report that the mitotic anchoring and orientation function of APC is regulated by cyclin A/cdk2. Knockdown of cyclin A and inhibition of cdk2 resulted in cells arrested in mitosis with activation of the spindle assembly checkpoint. The mitotic spindle was unable to form stable attachments to the cell cortex, and this resulted in the spindles failing to locate to the central position in the cells and undergo dramatic rotation. We have demonstrated that cyclin A/cdk2 specifically associates with APC in late G2 phase and phosphorylates it at Ser-1360, located in the mutation cluster region of APC. Mutation of APC Ser-1360 to Ala results in identical off-centered mitotic spindles. Thus, this cyclin A/cdk2-dependent phosphorylation of APC affects astral microtubule attachment to the cortical surface in mitosis.Adenomatous polyposis coli (APC)5 was initially identified as a tumor suppressor in familial colon cancers. It is a regulator of Wnt-β-catenin signaling and thereby regulates progression into the cell cycle, but also has Wnt-independent mitotic roles in spindle anchoring and kinetochore function (13). These latter functions of APC are mediated through its ability to bind microtubules and the end-binding protein, EB1 (2). Loss or mutation of APC has been demonstrated to increase chromosomal instability, although whether this is through its Wnt-dependent or independent functions is unclear (3). The mitotic defects caused by APC mutation and depletion are characterized by an inability to locate the center of the cell and failure of chromosomal alignment (4). It was also associated with a loss of normal spindle orientation in small intestinal crypts of APCMin/+ mice (5), suggesting that disruption of the normal mitotic functions of APC are likely to be major contributors to the chromosomal instability observed.APC interaction with EB1 is regulated by phosphorylation of its C-terminal domain by cyclin B/cdk1 in mitosis (6, 7). The majority of APC mutations occurs in a region from codons 1,000 to 1,500 called the mutation cluster region (MCR) and result in truncations of the C-terminal half of the protein, which includes the β-catenin, microtubule, and EB1 binding sites of APC (1, 2). Depletion of either APC or EB1 produce almost identical mitotic defects, indicating their interaction is critical to normal spindle formation (4, 8). However, expression of various truncation mutants across the MCR revealed interesting differences the spindle defects observed, suggesting that this role of APC in spindle function is not solely due to interaction with EB1 (4). Progression into mitosis is regulated by cyclin B/cdk1, but the timing of its activation is regulated by cyclin A/cdk2 (912), which in turn is regulated by the dual specificity phosphatase cdc25B in G2 phase (13). Cyclin A is destroyed at prometaphase (14) suggesting that its activity is required for not only entry into mitosis but during the early part of mitosis itself. The majority of substrates identified for cyclin A/cdk2 are nuclear, where the majority of cyclin A/cdk2 is localized in G2, but reports also suggest that cyclin A is capable of localizing to both the cytoplasm and centrosomes (9, 14, 15), thus there are likely to be additional substrates for this complex in the cytoplasmic compartment. In vitro studies using Xenopus extracts have demonstrated that cyclin A/cdk is capable of increasing microtubule nucleation at the centrosomes (16). Thus it is likely that cyclin A in association with its cdk partner has roles in not only promoting entry into mitosis but also in establishing mitosis, possibly by influencing the mitotic machinery.We have used siRNA to knockdown cyclin A2, the major cyclin A isoform in somatic cells, and cdk2 inhibitors to examine the role of the G2 phase cyclin A/cdk2 complex in cell cycle progression. We demonstrate that knockdown of cyclin A delayed progression through mitosis and activation of the spindle assembly checkpoint. Spindle anchoring was also defective, a phenotype identical to APC-truncating mutants. We demonstrate that cyclin A/cdk2 binds to APC in late G2 phase/early mitosis and phosphorylates Ser-1360, and that the lack of this phosphorylation of APC results in identical mitotic defects to the absence of cyclin A/cdk2.  相似文献   

19.
CEP192 is a centrosome protein that plays a critical role in centrosome biogenesis and function in mammals, Drosophila and C. elegans.1 Dix CI, Raff JW. Drosophila Spd-2 recruits PCM to the sperm centriole, but is dispensable for centriole duplication. Curr Biol 2007; 17:1759 - 64; http://dx.doi.org/10.1016/j.cub.2007.08.065; PMID: 17919907 [Crossref], [PubMed], [Web of Science ®] [Google Scholar]-6 Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, et al. Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol 2007; 17:1960 - 6; http://dx.doi.org/10.1016/j.cub.2007.10.019; PMID: 17980596 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] Moreover, CEP192-depleted cells arrest in mitosis with disorganized microtubules, suggesting that CEP192’s function in spindle assembly goes beyond its role in centrosome activity and pointing to a potentially more direct role in the regulation of the mitotic microtubule landscape.7 Gomez-Ferreria MA, Sharp DJ. Cep192 and the generation of the mitotic spindle. Cell Cycle 2008; 7:1507 - 10; http://dx.doi.org/10.4161/cc.7.11.5957; PMID: 18469523 [Taylor & Francis Online], [Web of Science ®] [Google Scholar] To better understand CEP192 function in mitosis, we used mass spectrometry to identify CEP192-interacting proteins. We previously reported that CEP192 interacts with NEDD1, a protein that associates with the γ-tubulin ring complex (γ-TuRC) and regulates its phosphorylation status during mitosis.8 Gomez-Ferreria M, Bashkurov M, Helbig A, Larsen B, Pawson T, Gingras AC, et al. Novel NEDD1 phosphorylation sites regulate γ-tubulin bindingand mitotic spindle assembly. J Cell Sci 2012; http://dx.doi.org/10.1242/jcs.105130; PMID: 22595525 [Crossref], [PubMed], [Web of Science ®] [Google Scholar] Additionally, within the array of proteins that interact with CEP192, we identified the microtubule binding K63-deubiquitinase CYLD. Further analyses show that co-depletion of CYLD alleviates the bipolar spindle assembly defects observed in CEP192-depleted cells. This functional relationship exposes an intriguing role for CYLD in spindle formation and raises the tantalizing possibility that CEP192 promotes robust mitotic spindle assembly by regulating K63-polyubiquitin-mediated signaling through CYLD.  相似文献   

20.
Learning processes in Drosophila have been studied through the use of Pavlovian associative memory tests, and these paradigms have been extremely useful in identifying both genetic factors and neuroanatomical structures that are essential to memory formation. Whether these same genes and brain compartments also contribute to memory formed from nonassociative experiences is not well understood. Exposures to environmental stressors such as predators are known to induce innate behavioral responses and can lead to new memory formation that allows a predator response to persist for days after the predator threat has been removed. Here, we utilize a unique form of nonassociative behavior in Drosophila where female flies detect the presence of endoparasitoid predatory wasps and alter their oviposition behavior to lay eggs in food containing high levels of alcohol. The predator-induced change in fly oviposition preference is maintained for days after wasps are removed, and this persistence in behavior requires a minimum continuous exposure time of 14 hr. Maintenance of this behavior is dependent on multiple long-term memory genes, including orb2, dunce, rutabaga, amnesiac, and Fmr1. Maintenance of the behavior also requires intact synaptic transmission of the mushroom body. Surprisingly, synaptic output from the mushroom body (MB) or the functions of any of these learning and memory genes are not required for the change in behavior when female flies are in constant contact with wasps. This suggests that perception of this predator that leads to an acute change in oviposition behavior is not dependent on the MB or dependent on learning and memory gene functions. Because wasp-induced oviposition behavior can last for days and its maintenance requires a functional MB and the wild-type products of several known learning and memory genes, we suggest that this constitutes a paradigm for a bona fide form of nonassociative long-term memory that is not dependent on associated experiences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号