首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Salient but aversive stimuli inhibit the majority of dopamine (DA) neurons in the ventral tegmental area (VTA) and cause conditioned place aversion (CPA). The cellular mechanism underlying DA neuron inhibition has not been investigated and the causal link to behavior remains elusive. Here, we show that GABA neurons of the VTA inhibit DA neurons through neurotransmission at GABA(A) receptors. We also observe that GABA neurons increase their firing in response to a footshock and provide evidence that driving GABA neurons with optogenetic effectors is sufficient to affect behavior. Taken together, our data demonstrate that synaptic inhibition of DA neurons drives place aversion.  相似文献   

2.
Summary The putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus acumbens (NAC) and the behavioural stimulation induced by systemically administered dizocilpine (MK-801) was investigated. Microdialysis was utilized in rats with probes in the VTA and NAC. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1.0 mM) or vehicle and dialysates from the NAC were analyzed with high-performance liquid chromatography for DA. Forty min after onset of CNQX or vehicle perfusion of the VTA MK-801 (0.1 mg/kg) was injected subcutaneously (sc). Subsequently, typical MK-801 induced behaviours were assessed. The MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC were effectively antagonized by CNQX perfusion of the VTA. However, by itself the CNQX or vehicle perusion of the VTA did not affect DA levels in NAC or the rated behaviours. The results indicate that MK-801 induced hyperlocomotion and increased DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by locally increased EAA release. In contrast, the enhanced DA output in the NAC induced by systemic nicotine (0.5 mg/kg sc) was not antagonized by intra VTA infusion of CNQX (0.3 or 1.0 mM), but instead by infusion of the NMDA receptor antagonist AP-5 (0.3 or 1.0 mM) into the VTA, which by itself did not alter DA levels in the NAC. Thus, the probably indirect, EAA mediated activation of the mesolimbic DA neurons in the VTA by MK-801 and nicotine, respectively, seems to be mediated via different glutamate receptor subtypes.  相似文献   

3.
Kim Y  Wood J  Moghaddam B 《PloS one》2012,7(1):e29766
Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning.  相似文献   

4.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

5.
The modulation and reconstruction of the cardio-respiratory neural circuit of Lymnaea stagnalis L. was compared to that of Helix ponatia L. where the input variation and signal molecules were found to have primary importance in network reorganization. From the cardio-respiratory circuit only neurons connected by afferent or efferent pathways to the peripheral chemosensory organ, the osphradium, were used. It was shown that, the general principles of the network reorganization is similar in the two species. The firing pattern of the neurons altered in Lymnaea depending on the input activation or presence of signal molecules in the vicinity of the neurons. The responses of the neurons to the same sensory information, originating from osphradium varied depending on their firing patterns. On central neurones the generation of phasic pattern and/or oscillation was an indicator of network disintegration leading to insensibility to the osphradial sensory inputs. Co-application of signal molecules (5HT, DA, GABA with opioid peptides) to the neurons caused a phasic firing pattern and/or oscillation leading to disintegration of one network and activation of another one. The effect of mu-opioid peptides on GABA-induced and voltage activated ion currents were shown to be the cellular target in reconstruction of neural networks in Lymnaea. The neural network reconstruction in vertebrate brain evoked by signal molecules can be compared to that observed in the identified network of Lymnaea stagnalis making this latter a useful model in further studies, too.  相似文献   

6.
Modulation of the Mesolimbic Dopamine System by Glutamate   总被引:4,自引:0,他引:4  
Glutamate has been shown to modulate motor behavior, probably via N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [DL-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.  相似文献   

7.
Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists.  相似文献   

8.
The mesolimbic reward pathway arising from dopaminergic (DA) neurons of the ventral tegmental area (VTA) has been strongly implicated in reward processing and drug abuse. In rodents, behaviors associated with this projection are profoundly influenced by an orexinergic input from the lateral hypothalamus to the VTA. Because the existence and significance of an analogous orexigenic regulatory mechanism acting in the human VTA have been elusive, here we addressed the possibility that orexinergic neurons provide direct input to DA neurons of the human VTA. Dual-label immunohistochemistry was used and orexinergic projections to the VTA and to DA neurons of the neighboring substantia nigra (SN) were analyzed comparatively in adult male humans and rats. Orexin B-immunoreactive (IR) axons apposed to tyrosine hydroxylase (TH)-IR DA and to non-DA neurons were scarce in the VTA and SN of both species. In the VTA, 15.0±2.8% of TH-IR perikarya in humans and 3.2±0.3% in rats received orexin B-IR afferent contacts. On average, 0.24±0.05 and 0.05±0.005 orexinergic appositions per TH-IR perikaryon were detected in humans and rats, respectively. The majority (86–88%) of randomly encountered orexinergic contacts targeted the dendritic compartment of DA neurons. Finally, DA neurons of the SN also received orexinergic innervation in both species. Based on the observation of five times heavier orexinergic input to TH-IR neurons of the human, compared with the rat, VTA, we propose that orexinergic mechanism acting in the VTA may play just as important roles in reward processing and drug abuse in humans, as already established well in rodents.  相似文献   

9.
Dopamine (DA) neurons in the ventral tegmental area (VTA) are thought to play a critical role in affective, motivational, and cognitive functioning. There are fundamental target-specific differences in the functional characteristics of subsets of these neurons. For example, DA afferents to the prefrontal cortex (PFC) have a higher firing and transmitter turnover rate and are more responsive to some pharmacological and environmental stimuli than DA projections to the nucleus accumbens (NAc). These functional differences may be attributed in part to differences in tonic regulation by glutamate. The present study provides evidence for this mechanism: In freely moving animals, blockade of basal glutamatergic activity in the VTA by the selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate antagonist LY293558 produced an increase in DA release in the NAc while significantly decreasing DA release in the PFC. These data support an AMPA receptor-mediated tonic inhibitory regulation of mesoaccumbens neurons and a tonic excitatory regulation of mesoprefrontal DA neurons. This differential regulation may result in target-specific effects on the basal output of DA neurons and on the regulatory influence of voltage-gated NMDA receptors in response to phasic activation by behaviorally relevant stimuli.  相似文献   

10.
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine (6-OH-DA) seven days earlier. The 6-OH-DA treated rats were divided into two groups, corresponding to animals with 20-80% (partial) and 85-99% (extensive) striatal DA tissue depletion, respectively. In rats with partial DA depletion, the striatal extracellular ASP levels significantly increased after intrastriatal dialysis perfusion with MK-801 (100 microM), an antagonist of NMDA receptors. In addition, a change in the pattern of local NMDA (500 microM)- induced efflux of ASP was observed in the striatum of these rats. However, in these partially DA-depleted striata no changes were found in basal extracellular levels of GLU, ASP and GABA or in NMDA- and MK-801-mediated effluxes of GLU and GABA relative to striata from sham rats. In contrast, rats with extensive striatal DA depletion exhibited a significant increase in ASP and GABA extracellular striatal levels, after intrastriatal dialysis perfusion with NMDA. In addition, the MK-801-mediated stimulation of extracellular ASP levels was accentuated along with the appearance of a MK-801 mediated increase in extracellular striatal GLU. Finally, basal extracellular levels of ASP, but not of GLU and GABA, were found to increase in extensive DA-depleted striata when compared to sham and partially DA-depleted striata. Thus, a differential regulation of basal and NMDA receptor-mediated release of transmitter amino acids occur seven days after partial and extensive DA-depleted striatum by 6-OH-DA-induced lesions of the nigrostriatal DA pathway. These findings may have implications as regards the participation of NMDA receptors in the compensatory mechanisms associated with the progress of Parkinson's disease, as well as in the treatment of this neurological disorder.  相似文献   

11.
Recent findings indicate that VTA and SN dopaminergic (DA) and GABAergic neurons form subpopulations that are divergent in their electrophysiological features, vulnerability to neurodegeneration, and regulation by neuropeptides. This diversity can be correlated with the anatomical organization of the VTA and SN and their inputs and outputs. In this review we describe the heterogeneity in ion channels and firing patterns, especially burst firing, in subpopulations of dopamine neurons. We go on to describe variations in vulnerability to neurotoxic damage in models of Parkinson’s disease in subgroups of DA neurons and its possible relationship to developmental gene regulation, the expression of different ion channels, and the expression of different protein markers, such as the neuroprotective marker calbindin. The electrophysiological properties of subgroups of GABAergic midbrain neurons, patterns of expression of protein markers and receptors, possible involvement of GABAergic neurons in a number of processes that are usually attributed exclusively to dopaminergic neurons, and the characteristics of a subgroup of neurons that contains both dopamine and GABA are also discussed.  相似文献   

12.
Intravenous administration ofl-stepholidine (SPD), a dopamine (DA) receptor antagonist, increased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the firing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomorphine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic adrninistration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v.). In contrast, the same treatment failed to affect the population of DA neurons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in proportion to dosage was only observed in the dose range of 10–40 mg/kg and lasted 15 min. SPD effectively antagonized the APO (2 mg/kg, i. p.)-induced stereotypy.The above-mentioned results suggest that SPD selectively inactivates the DA neurons in the VTA not in the SNC. SPD may associate with a low incidence of extrapyramidal side-effects and may be ranked as a promising compound for searching for a new kind of atypical neuroleptics.  相似文献   

13.
The endogenous polyamines spermine and spermidine increase the binding of [3H]MK-801 to NMDA receptors. This effect is antagonized by diethylenetriamine (DET). We report here that spermine increases the rates of both association and dissociation of binding of [3H]MK-801, suggesting that it increases the accessibility of the binding site for MK-801 within the ion channel of the receptor complex. 1,10-Diaminodecane (DA10) inhibited the binding of [3H]MK-801. This effect was due to a decrease in the rate of association with no change in the rate of dissociation of [3H]MK-801. The effect of DA10 was not mediated by an action of DA10 at the binding sites for glutamate, glycine, Mg2+, or Zn2+, and was attenuated by DET. This suggests that DA10 acts at the polyamine recognition site. In hippocampal neurons the NMDA-elicited current was decreased by DA10, an effect opposite to that of spermine. The effects of spermine and DA10 were selectively blocked by DET. It is concluded that DA10 acts as a negative allosteric modulator or inverse agonist at the polyamine recognition site of the NMDA receptor.  相似文献   

14.
15.
Lammel S  Ion DI  Roeper J  Malenka RC 《Neuron》2011,70(5):855-862
Midbrain dopamine (DA) neurons are not homogeneous but differ in their molecular properties and responses to external stimuli. We examined whether the modulation of excitatory synapses on DA neurons by rewarding or aversive stimuli depends on the brain area to which these DA neurons project. We identified DA neuron subpopulations in slices after injection of "Retrobeads" into single target areas of adult mice and found differences in basal synaptic properties. Administration of cocaine selectively modified excitatory synapses on DA cells projecting to nucleus accumbens (NAc) medial shell while an aversive stimulus selectively modified synapses on DA cells projecting to medial prefrontal cortex. In contrast, synapses on DA neurons projecting to NAc lateral shell were modified by both rewarding and aversive stimuli, which presumably reflects saliency. These results suggest that the mesocorticolimbic DA system may be comprised of three anatomically distinct circuits, each modified by distinct aspects of motivationally relevant stimuli.  相似文献   

16.
Intravenous administration of l-stepholidine (SPD), a dopamine (DA) receptor antagonist, in-creased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the fir-ing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomor-phine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic admin-istration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v. ). In contrast, the same treatment failed to affect the population of DA neu-rons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in pro-port  相似文献   

17.
The objectives of the present study were to examine the involvement of GABA and cholinergic receptors within the nucleus accumbens (ACB) on feedback regulation of somatodendritic dopamine (DA) release in the ventral tegmental area (VTA). Adult male Wistar rats were implanted with ipsilateral dual guide cannulae for in vivo microdialysis studies. Activation of the feedback system was accomplished by perfusion of the ACB with the DA uptake inhibitor GBR 12909 (GBR; 100 microm). To assess the involvement of GABA and cholinergic receptors in regulating this feedback system, antagonists (100 microm) for GABAA (bicuculline, BIC), GABAB (phaclofen, PHAC), muscarinic (scopolamine, SCOP), and nicotinic (mecamylamine, MEC) receptors were perfused through the probe in the ACB while measuring extracellular DA levels in the ACB and VTA. Local perfusion of the ACB with GBR significantly increased (500% of baseline) the extracellular levels of DA in the ACB and produced a concomitant decrease (50% of baseline) in the extracellular DA levels in the VTA. Perfusion of the ACB with BIC or PHAC alone produced a 200-400% increase in the extracellular levels of DA in the ACB but neither antagonist altered the levels of DA in the VTA. Co-perfusion of either GABA receptor antagonist with GBR further increased the extracellular levels of DA in the ACB to 700-800% of baseline. However, coperfusion with BIC completely prevented the reduction in the extracellular levels of DA in the VTA produced by GBR alone, whereas PHAC partially prevented the reduction. Local perfusion of the ACB with either MEC or SCOP alone had little effect on the extracellular levels of DA in the ACB or VTA. Co-perfusion of either cholinergic receptor antagonist with GBR markedly reduced the extracellular levels of DA in the ACB and prevented the effects of GBR on reducing DA levels in the VTA. Overall, the results of this study suggest that terminal DA release in the ACB is under tonic GABA inhibition mediated by GABAA (and possibly GABAB) receptors, and tonic cholinergic excitation mediated by both muscarinic and nicotinic receptors. Activation of GABAA (and possibly GABAB) receptors within the ACB may be involved in the feedback inhibition of VTA DA neurons. Cholinergic interneurons may influence the negative feedback system by regulating terminal DA release within the ACB.  相似文献   

18.
Shen X  Ruan X  Zhao H 《PloS one》2012,7(4):e34323
Ventral tegmental area (VTA) and substantia nigra pars compacta (SNpc) are midbrain structures known to be involved in mediating reward in rodents. Lateral habenula (LHb) is considered as a negative reward source and it is reported that stimulation of the LHb rapidly induces inhibition of firing in midbrain dopamine neurons. Interestingly, the phasic fall in LHb neuronal activity may follow the excitation of dopamine neurons in response to reward-predicting stimuli. The VTA and SNpc give rise to dopaminergic projections that innervate the LHb, which is also known to be involved in processing painful stimuli. But it's unclear what physiological effects these inputs have on habenular function. In this study we distinguished the LHb pain-activated neurons of the Wistar rats and assessed their electrophysiological responsiveness to the stimulation of the VTA and SNpc with either single-pulse stimulation (300 μA, 0.5 Hz) or tetanic stimulation (80 μA, 25 Hz). Single-pulse stimulation that was delivered to either midbrain structure triggered transient inhibition of firing of ~90% of the LHb pain-activated neurons. However, tetanic stimulation of the VTA tended to evoke an elevation in neuronal firing rate. We conclude that LHb pain-activated neurons can receive diverse reward-related signals originating from midbrain dopaminergic structures, and thus participate in the regulation of the brain reward system via both positive and negative feedback mechanisms.  相似文献   

19.
Summary Although controversial, studies with methamphetamine and MPTP suggest a link between glutamate-mediated excitotoxicity and degeneration of dopamine cells. Both compounds are thonght to create a metabolic stress. To further explore glutamate actions in DA degeneration, we investigated the effects of other metabolic inhibitors. In mesencephalic cultures, DA cell loss produced by 3-NPA or malonate was potentiated by NMDA and prevented by MK-801. In vivo, striatal DA loss produced by intranigral infusions of malonate was also potentiated by intranigral NMDA and prevented by systemic MK-801. In contrast, systemic MK-801 did not prevent DA loss produced by intrastriatal malonate. Intrastriatal MK-801 or CGS 19755 did attenuate DA loss in METH-treated mice, but was confounded by the findings that METH-induced hyperthermia, an important component in toxicity, was also attenuated. Taken together, the data support the hypothesis of NMDA receptor involvement in degeneration of DA neurons. Furthermore, the data also suggest that this interaction is likely to occur in the substantia nigra rather than in the striatum.  相似文献   

20.
Midbrain dopamine (DA) cells of the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) exhibit somatodendritic release of DA. To address how somatodendritic release is regulated by synaptic glutamatergic and GABAergic input, we examined the effect of ionotropic-receptor antagonists on locally evoked extracellular DA concentration ([DA]o) in guinea pig midbrain slices. Evoked [DA]o was monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry. In SNc, evoked [DA]o was 160% of control in the presence of the AMPA-receptor antagonist, GYKI-52466, or the NMDA-receptor antagonist, AP5. Similar increases were seen with the GABAA-receptor antagonist, picrotoxin, or the GABA(B)-receptor antagonist, saclofen. The increase seen with GYKI-52466 was prevented when both picrotoxin and saclofen were present, consistent with normal, AMPA-receptor mediated activation of GABAergic inhibition. The increase with AP5 persisted, however, implicating NMDA-receptor mediated activation of another inhibitory circuit in SNc. In the VTA, by contrast, evoked [DA]o was unaffected by GYKI-52466 and fell slightly with AP5. Neither picrotoxin nor saclofen alone or in combination had a significant effect on evoked [DA]o. When GABA receptors were blocked in the VTA, evoked [DA]o was decreased by 20% with either GYKI-52466 or AP5. These data suggest that in SNc, glutamatergic input acts predominantly on GABAergic or other inhibitory circuits to inhibit somatodendritic DA release, whereas in VTA, the timing or strength of synaptic input will govern whether the net effect on DA release is excitatory or inhibitory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号